Spelling suggestions: "subject:"trypanosoma brucei."" "subject:"rypanosoma brucei.""
101 |
Papel da glutamina na biologia do Trypanosoma cruzi e Trypanosoma brucei. / Role of glutamine in the biology of Trypanosoma cruzi and Trypanosoma brucei.Damasceno, Flávia Silva 25 October 2017 (has links)
Trypanosoma cruzi e Trypanosoma brucei são os agentes etiológicos da doença de Chagas e da doença do sono, respectivamente. Ambos são tripanossomatídeos, apresentam um ciclo de vida que alterna entre os hospedeiros mamíferos e os hospedeiros invertebrados e apresentam o metabolismo baseado no consumo de aminoácidos e/ou glicose, dependendo da disponibilidade de nutrientes no ambiente. Neste trabalho foi demonstrado a importância da glutamina (Gln) em diferentes aspectos da biologia do T. cruzi e a relevância da Gln e da enzima glutamina sintetase (GS) para formas sanguícolas de T. brucei. A Gln é transportada pelo T. cruzi e pelo T. brucei a partir do meio externo. Em T. cruzi foi demonstrado que esse transporte é realizado por um único sistema, saturável, específico, dependente de ATP e do gradiente de H+ na menbrana do parasita. Também foi demonstrado que a Gln é importante para replicação das formas amastigotas e epimastigotas, além de promover o processo de metaciclogênese. Tratamento com análogos estruturais da Gln dimuiu a proliferação do estágio epimastigota e também a diferenciação para tripomastigota metacíclico. Além do mais células infectadas e tratadas com os análogos apresentaram redução do número de tripomastigotas que eclodiram das células, demonstrando que a Gln também é importante para os estágios intracelulares. Em formas sanguícolas de T. brucei, a enzima GS é ativa, mas é incapaz de suprir a necessidade de Gln do parasita, fazendo com que seja completamente dependente do transporte a partir do meio externo. A Gln é importante para a proliferação formas sanguícolas e correta progressão do ciclo celular. Em meio sem Gln os parasitas são incapazes de manter a proliferação normalmente, sendo que este processo é dependente da concentração de Gln no meio externo. Também foi demonstrado que a Gln participa do processo de modificação pós-traducional de glutamilação da tubulina. Conclui-se portanto que a Gln é um aminoácido fundamental para sobrevivência do T. cruzi e do T. brucei. / Trypanosoma cruzi and Trypanosoma brucei are the etiologic agent of Chagas disease and sleeping sickness, respectively. Both parasites are trypanosomatids that have a complex life cycle, which alternates between a mammalian host and insect vector. T. cruzi and T. brucei are able to use carbohydrates and amino acids as energy source, depending on availability of nutrients in the different environments that parasites go through in the life cycle. In this work we demonstrate that glutamine (Gln) is an important metabolite that participates in many biological processes in T. cruzi, and the relevance of the enzyme glutamine synthetase and Gln in bloodstream forms of T. brucei. T. cruzi and T. brucei are able to uptake Gln from the medium. T. cruzi incorporate Gln through a single and saturable transport system. Gln uptake system is dependent on ATP intracellular levels and H+ gradient and is a highly specific system. Also was demonstrated that Gln is important to replicative stages amastigote and epimastigote, and promotes the metacyclogenesis process. The treatment with Gln analogs impared the epimastigote replication and the differentiation from epimastigote to trypomastigote metacyclic. Moreover, analogs treatment in the infected cells decrease the number of trypomastigotes released from the cells, suggesting that Gln is important to intracellular development of T. cruzi. This work also demonstrates that the enzyme glutamine synthetase is active in bloodstream forms from T. brucei, but is not enough to produce the amount of Gln required by the parasite. T. brucei, bloodstream forms are completely dependent of Gln uptake from the medium. The proper proliferation rate and correct cell cycle progress are dependent of Gln concentration in the medium. Moreover Gln participates in the tubulin glutamylation process in bloodstream forms; this is a post translational modification that is important to microtubules dynamics and cytokinesis process. We concluded that Gln is a fundamental amino acid to maintenance of T. cruzi and T. brucei.
|
102 |
Caractérisation et Ciblage de Protéines Essentielles via l'utilisation de nanobodies chez Trypanosoma brucei / Characterisation and Nanobody Targeting of Essential Cytoskeletal Proteins of Trypanosoma bruceiBroster, Christine 26 September 2019 (has links)
Les parasites de la classe des Kinetoplastidae, comprenant notamment les trypanosomes et les leishmanies, sont responsables pour plusieurs maladies d’importance socio-économique et de santé publique. La maladie du sommeil, la maladie de Chagas et la leishmaniose, classées comme maladies tropicales négligées (NTD) par l’Organisation mondiale de la santé (OMS) et la Surra, reportée par l’Organisation pour l’alimentation et l’agriculture, des Nations Unies (FAO). La Trypanosomiase Animale Africain sub-saharienne entraîne la mort de 3 millions bovins par an accompagné d'une perte annuelle de l'économie de 4,5 milliards de dollars américains. La leishmaniose cutanée, une maladie zoonose, présente 1,5 millions de nouveaux cas chaque année.Trypanosoma brucei (T. brucei) est un ancien eucaryote, utilisé comme organisme modèle dans le laboratoire pour l’étude des cils et des flagelles. Le remodelage du cytosquelette des trypanosomes est essentiel pour la morphologie cellulaire, le positionnement et la division des organites. L’étude des protéines essentielles du cytosquelette permet de mieux comprendre les processus cellulaires. Ces protéines pourraient également constituer des cibles potentielles pour des traitements thérapeutiques. Les trypanosomes échappent au système immunitaire de l’hôte en modifiant périodiquement les antigènes de présent à leur surface. En effet ces antigènes de surface sont endocytés, ainsi que les anticorps de l’hôte qui y sont attachés, au niveau d’une structure appelée la poche flagellaire (FP). TbBILBO1 est une protéine structurelle du collier de la poche flagellaire (FPC), essentielle à la biogenèse du FPC et à la survie du parasite. En raison du rôle majeur de la protéine TbBILBO1 dans le parasite, des partenaires de TbBILBO1 ont été recherchés.Dans ce travail, j’ai pu caractériser une nouvelle protéine essentielle du cytoskelette, la protéine FPC6, partenaire de TbBILBO1, qui se situe au niveau du complexe FPC/Complexe du Hook de T. brucei. L’ARN interférence de FPC6 conduit à une mort rapide des formes sanguines des trypanosomes, accompagnée d’un blocage de l’endocytose. Ensuite, j’ai produit un nanobody (Nb48), dirigé contre TbBILBO1, dans le système d’expression bactérien. Je l’ai également exprimé dans les lignées de trypanosomes. Le Nb48 reconnait TbBILBO1 sur les trypanosomes fixés par immunofluorescence et dans les extraits totaux de protéines dénaturées. L’analyse par résonance plasmonique de surface (SPR) a confirmé une haute affinité du Nb48 pour TbBILBO1. L’expression de Nb48 dans le parasite T. brucei en tant qu’intrabody demontrant que ce nanobody pouvait être exprimé de manière fonctionnelle, capable de reconnaitre spécifiquement sa cible protéique, TbBILBO1, intra-cellulaire et de bloquer sa fonction conduit à un effet trypanocide rapide. Ces études ouvrant ainsi la voie pour de nouvelles utilisations potentielles thérapeutiques dans le traitement des trypanosomiases. / Kinetoplastid parasites, including trypanosomes and leishmania, are responsible for several diseases of socio-economic and public health importance worldwide. These include the Neglected Tropical Diseases: Sleeping Sickness, Chagas disease and Leishmaniasis, as classified by the World Health Organisation (WHO) and the global wasting disease of animals, Surra, as reported by the Food and Agricultural Organisation of the United Nations (FAO). Animal African Trypanosomiais (AAT) causes the death of 3 million cattle per year in sub-Saharan Africa, with an annual loss of 4.5 billion US dollars to the African economy. Cutaneaous leishmaniasis is a zoonotic disease, with 1.5 million new cases reported globally each year.Trypanosoma brucei is an ancient, early diverging eukaryote, used as a model organism in the laboratory for studying eukaryotic cilia and flagella. Remodelling of the trypanosome cytoskeleton is essential for cell morphology, organelle positioning and division. Study of essential proteins of the cytoskeleton provides insight into intracellular processes and could provide potential targets for therapeutic interventions. Trypanosomes evade the host immune system by periodically changing their external surface coat, which is endocytosed, along with any attached host antibodies, via a structure called the flagellar pocket. TbBILBO1 is a structural protein of the Flagellar Pocket Collar (FPC) that is essential for FPC biogenesis and parasite survival. Due to the importance of TbBILBO1 for the parasite, protein partners were investigated.In my thesis, I describe, firstly, the characterisation of a novel and essential cytoskeletal protein, FPC6, of the FPC/Hook complex of T. brucei; FPC6 is a partner of TbBILBO1. RNAi Knock-down of FPC6 protein leads to rapid cell death in the blood-stream form of the parasite accompanied with a block in endocytosis. Secondly, I describe the purification and intracellular expression of a nanobody (Nb48), raised against TbBILBO1. The purified Nb is able to identify TbBILBO1 in fixed trypanosomes and denatured protein. Surface Plasmon Resonance analysis confirmed a high affinity of Nb48 to TbBILBO1. Expression of Nb48 as an intrabody in T. brucei, reveals that it binds precisely to its target, TbBILBO1 and leads to rapid cell death. Further exploration of the potential uses of this trypanocidal nanobody is warranted.
|
103 |
Tricyclic purine analogues as antiparasitic and antiviral agentsHagos, Asmerom M. 01 December 2003 (has links)
No description available.
|
104 |
Ethyl pyruvate emerges as a safe and fast acting agent against Trypanosoma brucei by targeting pyruvate kinase activityWorku, Netsanet, Stich, August, Daugschies, Arwid, Wenzel, Iris, Kurz, Randy, Thieme, Rene, Kurz, Susanne, Birkenmeier, Gerd 18 September 2015 (has links) (PDF)
Background: Human African Trypanosomiasis (HAT) also called sleeping sickness is an infectious disease in humans caused by an extracellular protozoan parasite. The disease, if left untreated, results in 100% mortality. Currently available drugs are full of severe drawbacks
and fail to escape the fast development of trypanosoma resistance. Due to similarities in cell metabolism between cancerous tumors and trypanosoma cells, some of the current registered drugs against HAT have also been tested in cancer chemotherapy. Here we demonstrate
for the first time that the simple ester, ethyl pyruvate, comprises such properties.
Results: The current study covers the efficacy and corresponding target evaluation of ethyl pyruvate on T. brucei cell lines using a combination of biochemical techniques including cell proliferation assays, enzyme kinetics, phasecontrast microscopic video imaging and ex vivo toxicity tests. We have shown that ethyl pyruvate effectively kills trypanosomes most probably by net ATP depletion through inhibition of pyruvate kinase (Ki = 3.0±0.29 mM). The potential of ethyl pyruvate as a trypanocidal compound is also strengthened by its fast acting property, killing cells within three hours post exposure. This has been demonstrated using video
imaging of live cells as well as concentration and time dependency experiments. Most importantly, ethyl pyruvate produces minimal side effects in human red cells and is known to easily cross the blood-brain-barrier. This makes it a promising candidate for effective treatment of the two clinical stages of sleeping sickness. Trypanosome drug-resistance tests indicate irreversible cell death and a low incidence of resistance development under experimental conditions.
Conclusion: Our results present ethyl pyruvate as a safe and fast acting trypanocidal compound and show that it inhibits the enzyme pyruvate kinase. Competitive inhibition of this enzyme was found to cause ATP depletion and cell death. Due to its ability to easily cross the bloodbrain-
barrier, ethyl pyruvate could be considered as new candidate agent to treat the hemolymphatic as well as neurological stages of sleeping sickness.
|
105 |
Genome characterisation and mobility investigation in trypanosomes /Branche, Carole, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2006. / Härtill 4 uppsatser.
|
106 |
Identification of potential therapeutic targets against trypanosomatid parasite related infections ; molecular and functional characterization of components of the flagellar pocket collar / Identification de cibles thérapeutiques potentielles contre les infections par les trypanosomatides ; caractérisation moléculaire et fonctionnelle des composants du collier de la poche flagellaireAlbisetti, Anna 08 December 2016 (has links)
Trypanosoma brucei, un parasite flagellé unicellulaire, est responsable de la trypanosomiase humaine africaine aussi connue comme la maladie du sommeil.Les microtubules (MTs) sous-pelliculaires, le quartet de MTs (MTQ), le flagelle (F) et le collier de la poche flagellaire (CPF) sont les principaux composants du cytosquelette dutrypanosome. À ce jour, une seule protéine du CPF, BILBO1, a été identifiée et caractérisée.Dans cette étude, nous montrons in vivo que BILBO1 forme des polymères capables deconstruire un échafaudage qui permet l’ancrage de protéines partenaires. Ainsi, un crible en double hybride chez la levure a identifié plusieurs protéines partenaires de BILBO1,notamment une nouvelle protéine appelée FPC4. Nous démontrons que FPC4 est une protéine spécifique des kinétoplastides, localisée au CPF mais aussi au hook-complex, une structure proche du CPF. L’interaction FPC4 – BILBO1 est démontrée in vitro et in vivo, etles domaines d'interaction identifiés. En outre, nous démontrons in vivo et in vitro que FPC4est une protéine associée aux microtubules. Nos données suggèrent fortement que FPC4est impliquée dans le processus de séparation des CPFs au cours du cycle cellulaire. Nos résultats mettent en évidence un lien étroit entre le MtQ et le CPF et l'implication probable duhook-complex. Enfin, nous mettons en évidence une structure analogue au hook-complex chez les Leishmanies. L’interaction BILBO1 – FPC4 représente une nouvelle cible thérapeutique et sera caractérisée plus avant. / Trypanosoma brucei, a unicellular flagellated parasite, is responsible for the human African trypanosomiasis also known as sleeping sickness. Sub-pellicular microtubules (MT), the MT quartet (MtQ), the flagellum (F) and the Flagellar Pocket Collar (FPC) are the main components of the T. brucei cytoskeleton. To date, only a single FPC protein, BILBO1, has been identified and characterized. In this study we demonstrate in vivo that BILBO1 forms polymers able to build a scaffold structure that anchors partner proteins. As such, a yeast-2-hybrid screen identified several BILBO1 interacting protein partners. We demonstrate that FPC4 is a kinetoplastid-specific protein, which is localized at the FPC and at the hook complex. Its specific interaction with BILBO1 has been demonstrated in vitro and in vivo, and the interacting domains identified. Furthermore, we demonstrate that FPC4 is a microtubule binding protein. Our data strongly suggest that FPC4 is involved in the separation of the old and the newly formed FPC during the cell cycle. Altogether, our results demonstrate a tight connection and interplay between the MtQ and the FPC and the likely involvement of an adjacent third structure, the hook complex. Finally, we highlight a structure similar to the hook-complex in Leishmania. The BILBO1 – FPC4 interaction represents a new therapeutic target and will be characterized further.
|
107 |
FoF1-ATP synthase/ATPase in the parasitic protist, \kur{Trypanosoma brucei} / FoF1-ATP synthase/ATPase in the parasitic protist, \kur{Trypanosoma brucei}ŠUBRTOVÁ, Karolína January 2015 (has links)
This thesis primarily focuses on the FoF1-ATP synthase/ATPase complex in the parasitic protist, Trypanosoma brucei. Instead of its normal aerobic function to synthesize ATP, it is required to hydrolyze ATP to maintain the m in the infective bloodstream stage of T. brucei and the related parasite, T. b. evansi. To better understand the composition, structure and function of this druggable target, my work focused on deciphering the function of three of the unique Euglenozoa specific subunits that comprise this complex molecular machine. Furthermore, the ADP/ATP carrier, which provides substrates for the FoF1-ATP synthase/ATPase, was functionally characterized and evaluated if it is physically associated with the complexes of the oxidative phosphorylation pathway.
|
108 |
Caracterização bioquímica e biofísica de proteínas específicas envolvidas no SL trans-splicing de Trypanosoma brucei / Biochemical and biophysical characterization of specific proteins involved in Trypanosoma brucei SL trans-splicingIvan Rosa e Silva 02 August 2016 (has links)
O SL trans-splicing (do inglês, spliced leader trans-splicing) catalisado pelo spliceossomo em Trypanosoma brucei é responsável pelo processamento dos pré-mRNAs policistrônicos em mRNAs maduros. Esta maquinaria é associada a partir de pequenas partículas ribonucleoproteicas nucleares (snRNPs) U1, U2, U4/U6 e U5 constituídas de pequenos RNAs nucleares (snRNAs), um complexo canônico de sete proteínas Sm (SmB, SmD3, SmD1, SmD2, SmE, SmF e SmG) e fatores proteicos específicos. O núcleo de proteínas Sm de T. brucei apresenta variações com funções desconhecidas, como a substituição do heterodímero SmD3/SmB por Sm16,5K/Sm15K na snRNP U2, e de SmD3 por SSm4 na snRNP U4. Na primeira parte deste trabalho, investigou-se a interação destes diferentes complexos Sm recombinantes com os snRNAs U2, U4 e U5 obtidos por transcrição in vitro. Todos os complexos apresentaram alta afinidade pelo snRNA cognato. Observou-se, ainda, que apenas o núcleo Sm que contém Sm16,5K/Sm15K associado ao snRNA U2 interage com alta afinidade com U2A/U2B. Adicionalmente, foi obtida a estrutura cristalográfica de U2A/U2B de T. brucei, que revela uma organização similar àquela já descrita para ortólogas de Homo sapiens. Entretanto, há um desvio de pelo menos 6 Å no ponto médio da alça carregada positivamente no domínio RRM de U2B para a acomodação do snRNA U2. Além disso, observou-se uma longa hélice-α adicional na extremidade C-terminal de U2A. A análise dos três núcleos Sm de T. brucei a partir da combinação de modelagem molecular e espalhamento de raios-X a baixo ângulo revela estruturas de barril-β altamente torcido com interior carregado positivamente para interação com snRNAs. A principal diferença entre as estruturas encontra-se nas extremidades C- e N-terminal dos variantes de proteínas Sm, possivelmente para interação com U2A no braço 1 do spliceossomo, no caso de Sm15K/Sm16,K, e com U5-220K e U5-200K no corpo do spliceossomo, no caso de SSm4. Na segunda parte deste trabalho, a expressão homóloga da proteína U5-200K de T. brucei completa e do produto truncado no seu cassete helicase/ATPase/Sec63 N-terminal levou à copurificação de um subcomplexo de snRNP U5 composto por U5-220K, U5-116K, U5-40K e U5-Cwc21, sendo que a proteína recombinante completa ainda copurificou as proteínas Sm. Experimentos de imunolocalização mostraram que a proteína U5-200K truncada não é direcionada ao núcleo, como é o caso da proteína completa. As células que expressam a proteína truncada apresentaram um defeito de crescimento significativo, e os processamentos de pré-mRNA por cis- e SL trans-splicing foram ligeiramente afetados, já que a proteína truncada não entra no núcleo, onde deveria exercer sua atividade. Os resultados apresentados indicam a formação de um subcomplexo de snRNP U5 ainda no citoplasma, sendo que as proteínas Sm devem ser um sinal para o seu transporte nuclear mediado por importina-β. Em leveduras, a proteína Aar2 substitui U5-200K no citoplasma, regulando assim a biogênese de snRNP U5, porém esta proteína não foi identificada em T. brucei. Os resultados apresentados neste trabalho contribuem como o primeiro estudo estrutural de proteínas spliceossomais de um parasita do homem e também com novas informações sobre a biogênese das partículas ribonucleoproteicas U2 e U5 de T. brucei. / The spliced-leader (SL) trans-splicing catalyzed by the spliceosome in Trypanosoma brucei is responsible for processing polycistronic pre-mRNAs into mature mRNAs. The spliceosome machinery is assembled by small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/U6 and U5 that are composed by small nuclear RNAs (snRNAs), a canonical complex of Sm proteins (SmB, SmD3, SmD1, SmD2, SmE, SmF, SmG) and specific factors. The Sm core peculiarly varies in T. brucei, where SmD3/SmB are replaced by Sm16.5K/Sm15K in U2 snRNP and SmD3 is substituted by SSm4 in U4 snRNP. In the first part of this thesis, we investigated the interaction of the different recombinant Sm cores with U2, U4 and U5 snRNAs obtained by in vitro transcription. All the protein complexes bind the cognate snRNA with high affinity. Only the Sm core that contains Sm16.5K/Sm15K associated with U2 snRNA interacts with the recombinant U2A/U2B subcomplex. Additionally, the crystallographic structure of T. brucei U2A/U2B was obtained, showing an overall organization similar to the one observed in the human counterpart. However, we observed a 6 Å deviation in the medium point of a positively charged turn in the RRM motif of U2B to accommodate U2 snRNA. Besides, a long α -helix was observed in the C-terminal region of U2A. Structural analysis of Sm core variations in T. brucei was proceeded using molecular modelling techniques associated with small angle X-ray scattering. The quaternary structure models show seven Sm proteins as β-barrels with positively charged interior for cognate snRNA interaction. The main difference among these Sm core structures resides in the C- and N-terminal regions of the variant proteins, probably enabling the interaction of Sm15K/Sm16,5K with U2A in the spliceosomes arm 1, and the association of SSm4 with U5-220K and U5-200K in the spliceosomes body. In the second part of this thesis, homologous expression of full-length and N-terminally truncated U5-200K from T. brucei led to the copurification of a U5 snRNP subcomplex containing U5-220K, U5-116K, U5-40K and U5-Cwc21. The full-length U5-200K construct also copurified Sm proteins. Immunolocalization experiments showed that the truncated U5-200K protein is not directed to the nucleus as is the case for the full-length protein. Cells that expressed the truncated protein showed a significant growth defect and the pre-mRNA processing by cis- and SL trans-splicing was negatively affected since the truncated protein did not enter the nucleus where it should be active. The results suggest that a subcomplex of U5 snRNP begins to be assembled in the cytoplasm and the Sm proteins may be the signal for the nuclear transport mediated by β-importin. In yeast, Aar2 replaces U5-200K in the cytoplasm in another regulation step. However, Aar2 has not been identified in T. brucei. The results presented here contribute with the first structural study of spliceosomal proteins of a human parasite and give new insights into the biogenesis of U2 and U5 snRNPs in T. brucei.
|
109 |
Characterisation of the mechanism of human serum resistance in T.b.gambienseFelu, Cécile 15 September 2006 (has links)
The two human pathogenic sub-species T.b.gambiense and T.b.rhodesiense can be distinguished from the morphologically identical T.b.brucei by their ability to infect humans, enabling them to cause sleeping sickness. This is because they are resistant to lysis by the lytic factor (APOL-I) present in normal human serum (NHS). In T.b.rhodesiense resistance to this lytic factor is due to a truncated VSG gene termed SRA which blocks lysis by interacting with APOL-I in the lysosome. SRA does not exist in T.b.gambiense. The search for a similar truncated VSG gene lead to the identification of a T.b.gambiense specific glycoprotein termed TGSGP. TGSGP transfected alone into the sensitive T.b.brucei is unable to confer resistance to this sub-species. This is either due to incorrect processing of this gene is this sub-species or because TGSGP requires a partner to confer resistance.<p><p>In the search for a partner, the genomic locus of TGSGP was cloned and sequenced. We found that TGSGP is linked to a truncated gene homologous to the S.cerevisiae AUT1 gene, a gene implicated in autophagy and more specifically in membrane expansion. Southern blot hybridization and PCR analysis on genomic DNA from several isolates demonstrated that this feature was a specific to T.b.gambiense. In addition, we observed a correlation between the aut1 allele size and the geographical origin of the isolate.<p><p>Since in trypanosomes lysis by NHS is due to an uncontrolled expansion of the lysosome, we speculated that the truncation of the aut1 allele could be implication in the resistance to human serum. We characterized the genomic organisation of the AUT1 locus. T.b.brucei possesses two native AUT1 alleles whilst T.b.gambiense possesses a truncated aut1 allele, as well as a native AUT1 allele. We showed that in the T.b.gambiense LiTAR isolate (aut1/AUT1), despite the presence of a wild-type allele this gene is no longer expressed at the mRNA and protein level. Our complimentary results by run-on transcription assay showed that the AUT1 region is transcribed but that the messenger is unstable. LiTAR is a functional knock-out for AUT1, but Northern blot analysis on several T.b.gambiense isolates showed that this is not a generalised T.b.gambiense characteristic. <p><p>We explored the role of AUT1 in trypanosomes by invalidation of the AUT1 gene in T.b.brucei and by the over-expression of the AUT1 and aut1 alleles in T.b.brucei. By functional analysis of AUT1 knocked-down cells we showed that AUT1 is not essential in trypanosomes. By recreating in T.b.brucei the T.b.gambiense AUT1/aut1 genotype we were able to show that the expression of the aut1 UTR down-regulated the expression of the wild-type AUT1 allele. We speculated that this may be due to a natural RNAi mechanism. Par northern blot, using probes covering the potential target region of AUT1, we detected a 50nt small RNA specific to T.b.gambiense. In addition, we showed that in a LiTAR strain in which the RNAi pathway was abolished AUT1 expression is restored. <p><p>We continued to investigate TGSGP’s role in the resistance to human serum by invalidation of TGSGP in T.b.gambiense and by expressing TGSGP in the NHS-sensitive T.b.brucei. Because T.b.gambiense cannot be cultured in vitro we established a new in vivo transfection technique and as the knock-out of TGSGP is most probably lethal, we created an inducible RNAi T.b.gambiense cell strain. These indispensable tools will be used to test whether invalidation TGSGP is sufficient to confer resistance to NHS. Many strategies were tested in order to correctly expressing TGSGP in T.b.brucei; in none of these transfectants was TGSGP correctly located in the flagellar pocket as is the case in T.b.gambiense and only partial resistance was ever obtained. In order to identify the factors in human serum that could interacts with TGSGP, we subjected NHS to affinity chromatography using TGSGP as bait. We showed that TGSGP interacts with APOA-I, a major component of HDLs.<p> / Doctorat en sciences, Spécialisation biologie moléculaire / info:eu-repo/semantics/nonPublished
|
110 |
Mécanismes moléculaires à l’origine de l’aneuploïdie mosaïque chez Leishmania : caractérisation du complexe du pore nucléaire chez les trypanosomatidés / Molecular mechanisms of mosaic aneuploidy in Leishmania : characterization of the nuclear pore complex in trypanosomatidsMorelle, Christelle 11 September 2015 (has links)
Chez les trypanosomatidés, on observe un double cycle cellulaire : karyokinèse et cytodiérèse sont synchronisées mais indépendantes. La membrane nucléaire persiste au cours de la mitose dite fermée. Les modalités de réplication de l'ADN et de sa régulation, de même que plusieurs étapes de la ségrégation des chromosomes, restent non élucidées : le kinétochore est composé de protéines très atypiques (KKTs), et il existe un déficit du nombre de kinétochores par rapport au nombre de chromosomes. D'autre part, la constitution des pôles du fuseau mitotique associés à la membrane nucléaire est totalement inconnue. Les nucléoporines sont des protéines conservées au cours de l'évolution, principalement impliquées dans la constitution des pores nucléaires et le trafic entre le noyau et le cytoplasme, mais également de plus en plus considérées comme des acteurs importants de la dynamique chromatinienne. En utilisant des vecteurs d'expression protéique sous forme fusionnée à la GFP, nous avons déterminé la localisation subcellulaire de 15 nucléoporines chez Leishmania major. Si la plupart de ces nucléoporines se localisent à la membrane nucléaire, plusieurs d'entre elles ont des localisations secondaires qui peuvent être prédominantes. Ainsi la nucléoporine Mlp2 est préférentiellement localisée au niveau du kinétochore et, en fin de mitose, à l'extrémité du fuseau mitotique chez les deux parasites Leishmania major et Trypanosoma brucei. En accord avec la localisation de TbMlp2 au kinétochore chez T. brucei, où les centromères sont identifiés, nous avons fréquemment détecté TbMlp2 à proximité des séquences centromériques, elles-mêmes détectées par FISH en périphérie du nucléole. Egalement grâce à la technique de FISH, nous montrons que l'inhibition de l'expression de TbMlp2 par ARN-interférence perturbe la distribution des chromosomes au cours de la mitose, conduisant à une aneuploïdie. Paradoxalement, cette inhibition n'a aucun effet sur la croissance des cellules. Nous présentons également le cas singulier de Mlp1, dont la localisation chez T. brucei dépend du site d'intégration choisi. Cette localisation sera discutée à la lumière des phénotypes observés lors de l'inhibition de son expression. / Trypanosomatid parasites exhibit two independent though coordinated (nuclear and mitochondrial) cell cycles, and a closed mitosis, of which many constituents and processes are unknown. In particular, most steps of the chromosome segregation remain elusive: the kinetochore is composed of atypical proteins called KKT and the number of kinetochores is deficient in relation to the number of chromosomes. Moreover, the constitution of the nuclear membrane-associated mitotic spindle poles is unknown. Nucleoporins are evolutionary conserved proteins mainly involved in the constitution of the nuclear pores and trafficking between the nucleus and cytoplasm, but are also increasingly viewed as main actors in chromatin dynamics. Using GFP-fused proteins, we determined the cellular localization of the 15 nucleoporins in Leishmania major. If most of these nucleoporins localized at the nuclear membrane, some of them exhibited secondary locations which are predominant in a few cases. Thus, the nucleoporin Mlp2 localized preferentially at the kinetochore and, at the end of mitosis, at the mitotic spindle poles in both parasites Leishmania major and Trypanosoma brucei. Consistent with the localisation of TbMlp2 to the kinetochore in T. brucei, where centromeres are identified, TbMlp2 was frequently detected in the vicinity of the centromeric sequences in the periphery of the nucleolus. The use of FISH allowed us to show that RNAi knockdowns of TbMlp2 disturbed the distribution of chromosomes during mitosis, leading to aneuploidy. Paradoxically RNAi knockdowns of TbMlp2 had no effect on cell growth. We will also present the singular case of Mlp1 whose location is dependent on the integration site in T. brucei. This location will be discussed in the light of the phenotypes observed after inhibition of its expression.
|
Page generated in 0.0591 seconds