• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 2
  • 2
  • Tagged with
  • 21
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a V5-Tag-Directed Nanobody and its Implementation as an Intracellular Biosensor of GPCR Signaling

Matte, Kevin 22 January 2024 (has links)
G protein-coupled receptors (GPCRs) are an important class of drug targets due to their involvement in various signaling pathways. GPCRs transmit signals from the extracellular environment to the interior of cells, regulating numerous physiological processes. GPCRs are known to engage in protein-protein interactions (PPIs) with a variety of intracellular signaling molecules, including G proteins, β-arrestins, and other adaptor proteins. Understanding these interactions is crucial for unraveling the complex signaling networks mediated by GPCRs and developing targeted therapeutics. Assay development plays a pivotal role in studying GPCR PPIs, allowing researchers to investigate the binding partners, functional consequences, and dynamics of these interactions. Developing assays for GPCR PPIs requires careful consideration of the specific interaction being studied, the choice of experimental techniques, and the suitability for the desired readout. These assays provide valuable insights into the molecular mechanisms underlying GPCR signaling and can aid in the discovery and development of novel therapeutic strategies targeting GPCR associated diseases. Considering that PPIs are highly dynamic processes, cellular assays are often essential for their study because they closely mimic the biological complexities of cellular environments. The present thesis aimed to develop an in cellulo proteomic assay by developing an intracellular nanobody targeting the V5-peptide tag. Functionalizing this anti-V5 intrabody would allow it to be implemented in various cell-based assays with any protein carrying the V5-tag. Therefore, the NbV5:V5 tag system presents itself as a versatile tool for live-cell imaging and a befitting adaptation to existing cellular assays dedicated to probing PPIs. The NbV5:V5 tag system has been applied to interrogate G protein-coupled receptor signaling with the ultimate goal of performing cellular studies of a broader and systematic nature using the genome-wide V5-tagged ORF library.
2

Développement et caractérisation d’anticorps de camélidés dirigés contre des récepteurs couplés aux protéines G et leur utilisation dans des approches structurales

Peyrassol, Xavier 17 May 2018 (has links)
Les camélidés possèdent une caractéristique immunologique particulière parmi les mammifères. En plus des anticorps conventionnels tétramériques composés de 2 chaînes lourdes et de 2 chaînes légères, on retrouve dans des proportions variant de 25 à 50% des anticorps dépourvus de chaînes légères. Le paratope de ces anticorps est dès lors constitué de la partie variable monomérique des chaînes lourdes. Ce domaine d’environ 15 kDa représente le plus petit fragment capable de lier un antigène et est communément appelé nanobody de par sa petite taille. Les nanobodies possèdent des propriétés uniques considérables comparés aux anticorps conventionnels, comme leur capacité à reconnaître des épitopes cryptiques mais aussi la possibilité de les modifier et les assembler facilement afin d’améliorer leurs propriétés. Ces dernières années, les nanobodies ont connu un intérêt grandissant tant au niveau de la recherche fondamentale qu’au niveau du développement de nouvelles solutions diagnostiques et thérapeutiques. Grâce à leur utilisation, la biologie structurale des RCPGs a connu des avancées significatives avec notamment l’obtention de la structure du récepteur β2-adrénergique dans une conformation active et complexé à une protéine G hétérotrimérique. Les RCPGs représentent la plus grande famille de récepteurs membranaires avec près de 800 récepteurs différents. Ils sont exprimés dans toutes les cellules de l’organisme et répondent à une large variété de ligands, les rendant indispensables dans la régulation de nombreux processus physiologiques. Ce rôle central dans la modulation des fonctions biologiques fait des RCPGs des cibles thérapeutiques de premier choix, comme en atteste le pourcentage élevé (30 à 40%) de médicaments dirigés contre cette classe de récepteurs et actuellement sur le marché. Depuis quelques années maintenant, la biologie structurale des RCPGs a connu un essor sans précédent avec à ce jour, près de 190 structures tridimensionnelles expérimentales résolues. Ces avancées ont permis de mieux comprendre les mécanismes d’action de ces récepteurs ainsi que le mode de liaison de ligands, ouvrant notamment de nouvelles perspectives thérapeutiques par le développement rationnel de nouvelles molécules.Au cours de ce travail, nous nous sommes efforcés de développer des outils et une méthodologie nous permettant de résoudre la structure expérimentale de 2 récepteurs :ChemR23 et VPAC1. Pour cela, nous avons développé et caractérisé des nanobodies dirigés contre ces 2 récepteurs. Nous avons montré que les nanobodies dirigés contre le récepteur ChemR23 possèdent des propriétés antagonistes en inhibant partiellement la libération calcique de cellules CHO surexprimant ChemR23 ainsi que le chimiotactisme de cellules dendritiques induit par la chémérine. Profitant de la modularité offerte par les nanobodies, nous avons conçu un nanobody bivalent, dont les propriétés antagonistes sont significativement améliorées. Concernant le récepteur VPAC1, nous avons identifié que les nanobodies générés reconnaissent un épitope présent au niveau du large domaine amino-terminal et distinct du site orthostérique du peptide VIP. Bien que dépourvu de propriétés fonctionnelles, 2 de ces nanobodies voient leur affinité augmentée en présence d’un agoniste, et diminué en présence d’un agoniste inverse. Enfin, nous montrons qu’ils sont utilisables pour la détection du récepteur endogène présent à la surface de leucocytes mais également au niveau de coupes de tissus gastro-intestinaux sains.En parallèle, nous avons mis au point la production de ces récepteurs dans des cellules d’insecte, permettant de produire les quantités nécessaires à des études structurales. Nous avons également apporté et validé diverses modifications à la structure de ces récepteurs, en vue d’augmenter leur stabilité une fois extraits de leur environnement natif. Un processus itératif nous a permis de déterminer les conditions optimales de solubilisation de ces récepteurs afin de maximiser l’obtention d’une forme monomérique et de minimiser la présence de formes multimériques ou dégradées. Nos premiers essais de purification par chromatographie d’affinité sur colonnes de nickel, ainsi que par chromatographie d’exclusion de taille, nous ont permis d’isoler des récepteurs entiers. Cependant, les chromatogrammes issus des purifications par chromatographie d’exclusion de taille suggèrent la présence de récepteurs en partie agrégés. De plus, nous n’avons pu déterminer précisément à ce jour si les récepteurs purifiés maintenaient une conformation native, prérequis indispensable pour réaliser des études cristallographiques.Bien que nous n’ayons pas résolu la structure expérimentale de ces 2 récepteurs, le travail réalisé dans le cadre de notre thèse de doctorat a permis de développer des nanobodies qui représentent des outils innovants pour l’études des RCPGs ainsi que de mettre au point des protocoles de production et de purification préliminaire des récepteurs ChemR23 et VPAC1 en vue de leur étude cristallographique. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
3

Synthesis and characterisation of peptide-based probes for quantitative multicolour STORM imaging

Taylor, Edward John Robert January 2018 (has links)
Current single molecule localisation microscopy methods allow for multicolour imaging of macromolecules in cells, and for a degree quantification on molecule numbers in one colour. However, that has not yet been an attempt to develop tools capable of quantitative imaging with multiple colours in cells. This work addressed this challenge by designing linker peptides with chemospecific groups to allow attachment of activator and emitter dyes for STORM imaging, and a targeting module. The design ensured a stoichiometric ratio of targeting module to activator and emitter dyes. Peptides with HaloTag ligands attached were labelled with various activator and emitter pairs and used to label HaloTag fusions of S. pombe and mouse embryonic stem cells. These peptides were found to bind non-specifically to various areas of both cell types, and did not localise to HaloTag protein, whereas controls did. Another peptide was also labelled with activator-emitter pairs and attached to expressed anti-GFP and ant-mCherry nanobodies via native chemical ligation. The labelled anti-GFP nanobody was to demonstrate ensemble and single molecule imaging in S. pombe, as well as characterisation on single molecule surfaces in comparison to a conventional randomly labelled antibody. The stoichiometrically labelled nanobody had a more consistent number of photons detected per localisation, number of localisation per molecule and number of blinks per molecule, which implied that it could be more useful than randomly labelled nanobodies for counting experiments. It was also shown to be capable of specific laser activation for STORM imaging with both an Alexa405Cy5 and Cy3Cy5 pairs. These anti-GFP and anti-mCherry nanobodies and peptide linker are new tools for both counting and multicolour imaging in super-resolution, which could be widely applied to constructs that are already tagged with GFP or mCherry.
4

Kombinatorische Analyse von Nanobody-markierten Epitopen zur Proteinbestimmung / Combinatorial analysis of nanobody-detected epitopes for protein identification

Hoff, Merle 22 February 2021 (has links)
No description available.
5

Multiplexe optische und Rasterkraftmikroskopie für biomedizinische Bildgebung / Multiplex optical and Atomic Force Microscopy for biomedical imaging

Mittelmeier, Lucas 31 December 1100 (has links)
No description available.
6

Analyzing UNC-50/GMH1 dependent membrane trafficking in yeast and C. elegans

Jeon, Suekyoung 03 December 2014 (has links)
No description available.
7

Targeting the N-myc oncoprotein using nanobody technology

Kent, Lisa January 2018 (has links)
The myc family of oncogenic transcription factors, which includes c-myc, N-myc and L-myc, control major cellular processes such as proliferation and differentiation by integrating upstream signals and orchestrating global gene transcription. They do this largely through dimerising with Max, which together bind to enhancer (E)-box elements in DNA. Myc proteins function similarly but differ in potency and tissue distribution. For instance, N-myc is expressed predominantly during development in undifferentiated cells of the nervous system, whereas c-myc is ubiquitously expressed in all proliferating cells. Myc proteins, when deregulated, are major drivers of tumourigenesis. Myc deregulation occurs in up to 70% of all human cancers and is often associated with the most aggressive forms. For example, MYCN, the gene encoding N-myc, is amplified in 20-30% of neuroblastomas, and amplification strongly correlates with advanced stage and poor prognosis. Myc proteins are therefore considered “most wanted” targets for cancer therapy, but have long been considered undruggable mainly due to challenges in nuclear drug delivery and physically targeting myc directly given that it is a largely disordered protein that lacks discernible clefts and pockets for small molecules to inhabit. Furthermore, c-myc is important in normal tissue maintenance so the effect of its inhibition in humans is difficult to predict. However, recent in vivo studies showed that systemic myc inhibition (using the peptide pan myc inhibitor Omomyc) has mild and reversible side effects and induces tumour regression. This has alleviated concerns about the side effects that myc inhibition might have, and reinforced the promise of myc as a powerful drug target. However, the translation of Omomyc into the clinic has been hindered by poor cellular delivery. In fact, no direct myc inhibitor has yet been approved, indicating that novel approaches are needed. Moreover, inhibitors in development tend to inhibit all myc family proteins. An inhibitor that could specifically target N-myc might improve safety through bypassing c-myc inhibition. This could be used for the treatment of N-myc-driven cancers such as MYCN-amplified neuroblastoma. Nanobodies, camelid-derived single-domain antibodies, are a relatively new drug class. Whilst some are already in clinical trials for a wide range of diseases, these are specific for cell-surface or extracellular targets. However, their properties also make them ideal for use as intracellular antibodies or ‘intrabodies’. For example, they are small (just 12-15 kDa) and highly soluble due to naturally occurring hydrophobic to hydrophilic amino acid substitutions. Their small size and convex shape makes them advantageous in capturing structures in intrinsically disordered proteins and allows them to reach hidden epitopes not accessible to conventional antibodies, which could improve biological activity. Importantly, nanobodies retain the high specificities and affinities of conventional antibodies. Their small, single-domain nature also means they can be engineered with ease to modify aspects of their localisation and/or function. For example, they can be coupled to carrier molecules to facilitate cellular entry, and a nuclear localisation signal (NLS) can be added to drive them into the nucleus. Also, it was recently shown that an F-box domain could also be incorporated into nanobodies to recruit degradation machinery to its antigen, which depletes the antigen from cells via the proteasomal degradation pathway. Due to their highly advantageous properties, nanobodies raised against N-myc might overcome the barriers to targeting N-myc, providing potent and specific means of directly inhibiting N-myc therapeutically, which has not yet been achieved. In this thesis, nine unique nanobodies were raised against N-myc. These included three against the basic helix-loop-helix leucine zipper (bHLH-LZ) domain where Max dimerises, and six against the transactivation domain where numerous regulatory and cofactor proteins bind, such as the E3 ubiquitin ligase Skp2. Nanobodies against the transactivation domain were more specific for N-myc and were shown to inhibit its Skp-2-mediated ubiquitylation. This could provide novel means of eradicating tumours based on a study showing that inhibition of ubiquitylation at this domain triggers a transcriptional ‘switch’ that induces a non-canonical target gene Egr1, leading to p53-independent apoptosis. A nanobody against the bHLH-LZ (Nb C2) was shown to bind both N- and c-myc to similar magnitudes. Its affinity for N-myc bHLH-LZ was superior to that of the small molecule myc inhibitor 10058-F4, which prolongs survival in a MYCN-dependent mouse model of high-risk neuroblastoma. Nb C2 spontaneously transduced cell membranes and its coupling to a novel small molecule carrier (SMoC) enhanced its cellular uptake. Furthermore, the addition of a NLS increased its nuclear localisation. Preliminary experiments showed that Nb C2 might slow proliferation and induce apoptosis in cancer cell lines expressing c-myc, suggesting that Nb C2 might also be effective against cancers characterised by deregulated c-myc. Taken together, data generated in this thesis have revealed intriguing findings that provide a basis for the development of these nanobodies for the treatment of N-myc- and c-myc-driven cancers.
8

Bacterial display systems for engineering of affinity proteins

Fleetwood, Filippa January 2014 (has links)
Directed evolution is a powerful method for engineering of specific affinity proteins such as antibodies and alternative scaffold proteins. For selections from combinatorial protein libraries, robust and high-throughput selection platforms are needed. An attractive technology for this purpose is cell surface display, offering many advantages, such as the quantitative isolation of high-affinity library members using flow-cytometric cell sorting. This thesis describes the development, evaluation and use of bacterial display technologies for the engineering of affinity proteins. Affinity proteins used in therapeutic and diagnostic applications commonly aim to specifically bind to disease-related drug targets. Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is a critical process in various types of cancer and vascular eye disorders. Vascular Growth Factor Receptor 2 (VEGFR2) is one of the main regulators of angiogenesis. The first two studies presented in this thesis describe the engineering of a biparatopic Affibody molecule targeting VEGFR2, intended for therapeutic and in vivo imaging applications. Monomeric VEGFR2-specific Affibody molecules were generated by combining phage and staphylococcal display technologies, and the engineering of two Affibody molecules, targeting distinct epitopes on VEGFR2 into a biparatopic construct, resulted in a dramatic increase in affinity. The biparatopic construct was able to block the ligand VEGF-A from binding to VEGFR2-expressing cells, resulting in an efficient inhibition of VEGFR2 phosphorylation and angiogenesis-like tube formation in vitro. In the third study, the staphylococcal display system was evaluated for the selection from a single-domain antibody library. This was the first demonstration of successful selection from an antibody-based library on Gram-positive bacteria. A direct comparison to the selection from the same library displayed on phage resulted in different sets of binders, and higher affinities among the clones selected by staphylococcal display. These results highlight the importance of choosing a display system that is suitable for the intended application. The last study describes the development and evaluation of an autotransporter-based display system intended for display of Affibody libraries on E. coli. A dual-purpose expression vector was designed, allowing efficient display of Affibody molecules, as well as small-scale protein production and purification of selected candidates without the need for sub-cloning. The use of E. coli would allow the display of large Affibody libraries due to a high transformation frequency. In combination with the facilitated means for protein production, this system has potential to improve the throughput of the engineering process of Affibody molecules. In summary, this thesis describes the development, evaluation and use of bacterial display systems for engineering of affinity proteins. The results demonstrate great potential of these display systems and the generated affinity proteins for future biotechnological and therapeutic use. / <p>QC 20141203</p>
9

Development of Nanobodies to Image Synaptic Proteins in Super-Resolution Microscopy

Maidorn, Manuel 15 November 2017 (has links)
No description available.
10

Studium interakce receptoru NKp46 s adhesinem Epa1 / Study of the interaction of receptor NKp46 with adhesin Epa1

Houserová, Jana January 2020 (has links)
One of the key components of the innate immune system are natural killer (NK) cells. The task of these cells is to induce apoptosis in target cells (e.g., cancer or virally infected cells). The target cells are identified by their interaction with surface receptors of the NK cells. On the surface of the NK cells, there are activating and inhibiting receptors. One of the activating receptors is the natural cytotoxicity receptor NKp46. Several ligands of this receptor have been identified, one of them being the epithelial adhesin Epa1 of yeast Candida glabrata. The invasive candidiasis caused by this yeast is a feared complication for patients with haematological diseases. The use of the NK cells in immunotherapy includes bispecific fusion proteins which can bind to the NK receptor with one part and to tumour antigen with the other part. This work focuses on recombinant preparation of the NKp46 protein. To facilitate a study of the effects of O-glycosylation on the binding of the ligands, a mutation of the glycosylation site NKp46 T225A was prepared. A stably transfected HEK293S GnTI- and HEK293T cells had been prepared and these proteins were then extracellularly secreted. The Epa1 protein had been produced in E. coli bacterial expression system and purified. The binding ability of the Epa1 protein...

Page generated in 0.0198 seconds