• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of cellular origin and molecular mechanism in basal and squamous cell carcinomas

Kass, Youssef Khalil 04 October 2012 (has links)
Skin cancers are very common in humans. The two most frequent epithelial skin cancers are the basal cell carcinoma (BCC) and the squamous cell carcinoma (SCC). For the vast majority of cancers, the cell at the origin of tumour initiation is still unknown and assumptions concerning their origin rely mainly on morphological and immunohistochemical studies. Recently, adult stem cells (SCs) have been suggested to be at the origin of tumour initiation based on their long term self-renewing capacities. According to these, two important questions arise; do epithelial skin cancers arise from mutations in a specific cell lineage of the epidermis? And are the stem cells more competent to initiate tumors than committed cells?<p>BCCs result from aberrant activation of HH signaling and several mouse models carrying mutations in HH signaling genes are capable to form tumors resembling to human BCCs. <p>To identify the cell lineage at the origin of BCC and to investigate the role of stem cells in tumor initiation, we followed a genetic approach where we conditionally expressed SmoM2 oncogene (a constitutively active Smoothened mutant) in distinct skin epidermal compartments including SCs. Targeting basal epidermis cells, showed that only SmoM2-clones in the inter follicular epidermis (IFE) and the infundibulum can progress into BCC, whereas SmoM2 expression in Bulge SCs or in matrix transit amplifying progenitor cells never leads to BCC formation. Progressively after SmoM2 expression, tumor-initiating cells lose their normal differentiation to adopt a hair placode-like shape and markers, demonstrating that biochemical and morphological tumour features can be misleading in extrapolating their cellular origin.<p><p>The molecular changes occurring in tumor initiating cells and the mechanisms regulating the early steps of cancer development are poorly characterized for the majority of tumors. To address these questions in BCC, we took advantage of our ability to isolate SmoM2 expressing cells at different stages of tumor initiation and progression. Transcriptional profiling of SmoM2-basal IFE cells isolated one week (normal histology) and 4 weeks (dysplastic lesion), suggests that adult IFE cells undergo a reprogramming into embryonic hair follicle (EHFP) like fate. In addition, we showed that Wnt/β-catenin signaling is essential for BCC initiating cell reprogramming into EHFP like fate and for tumor initiation in a cell autonomous manner. Finally, we show that EHFP reprogramming occurs also in human BCCs in addition to the presence of a similar canonical Wnt activation signature to the one revealed in the SmoM2-BCC mouse model.<p><p>SCC is the second most frequent skin cancers after BCC and mutations in p53 and Ras genes has been suggested to be potentially the primary events in this tumour. SCCs present signs of squamous differentiation, suggesting that SCCs may originate from the inter follicular epidermis (IFE). To identify the cell lineage at the origin of SCC and the role of the hair follicle SCs in tumor initiation, we use a genetic tools driving oncogenic KRas (KRasG12D) expression at physiological levels in different epidermal compartments. <p>Targeting KRasG12D expression in bulge SCs and their progeny or in IFE results in benign tumor development with no sign of malignant transformation. In contrast, KRasG12D expression in HF Transit amplifying (TA) matrix cells do not promotes any macroscopic tumors or microscopic defects in the epidermis. Interestingly, papillomas arising from the IFE express follicular markers such as CD34 and K17, indicating that the expression of HF markers by tumor cells does not necessarily reflect their cellular origin. Using a combination of deletion of both p53 alleles together with KRasG12D expression, we showed that bulge SCs and/or their progeny but not HF matrix TA cells, promote SCC formation, suggesting that additional genetic hits such as p53 are required to promote full-blown invasive skin SCC. <p><p>In summary, our work demonstrated the non-follicular origin of BCC resulting from Smo mutation, as well as the implication of the IFE progenitors in tumor initiation. We also revealed the progressive reprogramming of BCC initiating cells towards an EHFP-like fate and the key role of Wnt/β-catenin pathway in this process. In contrast, we showed the competence of several epidermal lineages to initiate benign tumors upon expression of KRasG12D oncogene at physiological levels. We also demonstrated that lineage -specific markers expression within tumor cells does not necessarily reflect their cellular origin. Finally, we demonstrated the requirement of additional hits, such as P53 loss, to promote malignant progression in the context of oncogenic Ras.<p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished
2

Distribuição COM-Poisson na análise de dados de experimentos de quimioprevenção do câncer em animais

Ribeiro, Angélica Maria Tortola 16 March 2012 (has links)
Made available in DSpace on 2016-06-02T20:06:06Z (GMT). No. of bitstreams: 1 4336.pdf: 1594022 bytes, checksum: ff2370b4d516b9cdf6dd6da3be557c42 (MD5) Previous issue date: 2012-03-16 / Financiadora de Estudos e Projetos / Experiments involving chemical induction of carcinogens in animals are common in the biological area. Interest in these experiments is, in general, evaluating the chemopreventive effect of a substance in the destruction of damaged cells. In this type of study, two variables of interest are the number of induced tumors and their development times. We explored the use of statistical model proposed by Kokoska (1987) for the analysis of experimental data of chemoprevention of cancer in animals. We flexibility the Kokoska s model, subsequently used by Freedman (1993), whereas for the variable number of tumors induced Conway-Maxwell Poisson (COM-Poisson) distribution. This distribution has demonstrated efficiency due to its great flexibility, when compared to other discrete distributions to accommodate problems related to sub-dispersion and super-dispersion often found in count data. The purpose of this paper is to adapt the theory of long-term destructive model (Rodrigues et al., 2011) for experiments chemoprevention of cancer in animals, in order to evaluate the effectiveness of cancer treatments. Unlike the proposed Rodrigues et al. (2011), we formulate a model for the variable number of detected malignant tumors per animal, assuming that the probability of detection is no longer constant, but dependent on the time step. This is an extremely important approach to cancer chemoprevention experiments, because it makes the analysis more realistic and accurate. We conducted a simulation study, in order to evaluate the efficiency of the proposed model and to verify the asymptotic properties of maximum likelihood estimators. We also analyze a real data set presented in the article by Freedman (1993), to demonstrate the efficiency of the COM-Poisson model compared to results obtained by him with the Poisson and Negative Binomial distributions. / Experimentos que envolvem a indução química de substâncias cancerígenas em animais são comuns na área biológica. O interesse destes experimentos é, em geral, avaliar o efeito de uma substância quimiopreventiva na destruição das células danificadas. Neste tipo de estudo, duas variáveis de interesse são o número de tumores induzidos e seus tempos de desenvolvimento. Exploramos o uso do modelo estatístico proposto por Kokoska (1987) para a análise de dados de experimentos de quimioprevenção de câncer em animais. Flexibilizamos o modelo de Kokoska (1987), posteriormente utilizado por Freedman (1993), considerando para a variável número de tumores induzidos a distribuição Conway-Maxwell Poisson (COM-Poisson). Esta distribuição tem demonstrado eficiência devido à sua grande flexibilidade, quando comparada a outras distribuições discretas, para acomodar problemas relacionados à subdispersão e sobredispersão encontrados frequentemente em dados de contagem. A proposta deste trabalho consiste em adaptar a teoria de modelo destrutivo de longa duração (Rodrigues et al., 2011) para experimentos de quimioprevenção do câncer em animais, com o propósito de avaliar a eficiência de tratamentos contra o câncer. Diferente da proposta de Rodrigues et al. (2011), formulamos um modelo para a variável número de tumores malignos detectados por animal, supondo que sua probabilidade de detecção não é mais constante, e sim dependente do instante de tempo. Esta é uma abordagem extremamente importante para experimentos quimiopreventivos de câncer, pois torna a análise mais realista e precisa. Realizamos um estudo de simulação com o propósito de avaliar a eficiência do modelo proposto e verificar as propriedades assintóticas dos estimadores de máxima verossimilhança. Analisamos também um conjunto de dados reais apresentado no artigo de Freedman (1993), visando demonstrar a eficiência do modelo COM-Poisson em relação aos resultados por ele obtidos com as distribuições Poisson e Binomial Negativa.
3

Étude des propriétés oncogéniques des membres de la famille SNAIL / Analysis of the oncogenic properties of the SNAIL family members

Gras, Baptiste 19 December 2012 (has links)
En parallèle à son rôle dans l’initiation de la cascade métastatique, la transition épithéliomésenchymateuse est capable de faciliter la transformation néoplasique par le biais de mécanismes encore indéfinis. Nous avons démontré que, comme SNAIL1 et SNAIL2, l’expression de SNAIL3 est réactivée de façon aberrante dans les cancers humains, en particulier dans les carcinomes mammaires, établissant un lien entre l’ensemble des membres de la famille SNAIL et la tumorigénèse. Expérimentalement, les trois protéines SNAIL induisent une EMT avec des efficacités différentes. Ce différentiel reflète leur capacité à protéger les cellules de l’anoikis et à favoriser la prolifération dans des conditions de faible adhérence en absence d’altération oncogénique. La réversion partielle du processus d’EMT en réponse à l’expression ectopique des protéines ST14/Matriptase ou de l’E-cadhérine inhibe le potentiel oncogénique des protéines SNAIL. Nous avons donc démontré que la perte de protéines responsables du maintien de l’intégrité de l’épithélium contribue à l’activité pro-tumorale des inducteurs d’EMT / Beyond its role in initiating the metastatic cascade, cell commitment to the epithelial-to-mesenchymal transition program has been shown to facilitate neoplastic transformation, the underlying mechanisms yet remaining elusive. We herein demonstrate that likewise SNAI1 and SNAI2, the expression of SNAI3 is aberrantly reactivated in human cancers, mainly in breast carcinomas, linking all members of the SNAIL family to tumorigenesis. Experimentally, the three SNAIL proteins trigger EMT with unequal efficiencies. This differential mirrors their ability to protect cells from anoikis and to sustain proliferation in low-adherent conditions in absence of an oncogenic insult. Partial reversion of the EMT-process, achieved through forced expression of the ST14/Matriptase or E-cadherin proteins, alleviates the SNAIL oncogenic potential. We thus demonstrate that loss of epithelial integrity gatekeepers contributes to the tumor promoting activity of embryonic EMT-inducers

Page generated in 0.1579 seconds