• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contrôle de la signalisation oncogénique du mutant L858R de l'EGFR par la protéine suppresseur de tumeur p14ARF dans les adénocarcinomes pulmonaires / Control of EGFR-L858R oncogenic signaling pathway by the p14ARF tumor suppressor in lung adenocarcinoma.

Ozenne, Peggy 29 November 2011 (has links)
Contrôle de la signalisation oncogénique du mutant L858R de l'EGFR par la protéine suppresseur de tumeur p14ARF dans les adénocarcinomes pulmonaires. Le récepteur à l'EGF (EGFR) est un oncogène puissant impliqué dans le développement des cancers du poumon. Dans ces cancers, la présence de mutations activatrices de l'EGFR (majoritairement L858R et Del19) est un facteur prédictif de réponse aux agents pharmacologiques qui ciblent spécifiquement ce récepteur (EGFR-TKI). Cependant, l'association entre réponse thérapeutique et mutation est plus complexe que prévue, soulignant la nécessité d'approfondir la compréhension des mécanismes moléculaires impliqués dans développement de ces cancers. Nous avons précédemment montré que la quasi-totalité des tumeurs pulmonaires avec des mutations activatrices de l'EGFR présente une expression faible ou indétectable de la protéine suppressive de tumeur p14ARF. Ces résultats nous ont conduites à émettre l'hypothèse que l'expression de p14ARF était un frein essentiel à l'expansion clonale de ces cellules. Nous décrivons pour la première fois une relation fonctionnelle entre p14ARF et du mutant L858R de l'EGFR dans laquelle p14ARF inhibe la croissance de cellules exprimant ce mutant en induisant leur apoptose. Les effets suppresseurs de tumeur de p14ARF impliquent une fonction pro-apoptotique originale de STAT3 qui conduit à l'inhibition de l'expression de la protéine anti-apoptotique Bcl-2. De plus, nous montrons que les cellules EGFR-L858R maintiennent leur avantage de croissance en inhibant l'expression de p14ARF et la signalisation pro-apoptotique STAT3/Bcl-2 qui en découle. Nos résultats identifient également p14ARF comme une nouvelle cible transcriptionnelle de STAT3, mettant ainsi en évidence une boucle de rétrocontrôle positif entre ces deux protéines qui pourrait entretenir la signalisation pro-apoptotique médiée par STAT3. Sur la base de ces résultats, nous suggérons que la réactivation de la voie p14ARF/STAT3/Bcl-2 pourrait être une nouvelle stratégie thérapeutique dans le traitement de ces cancers. / Control of EGFR-L858R oncogenic signaling pathway by the p14ARF tumor suppressor in lung adenocarcinoma. The EGF receptor (EGFR) is a strong oncogene involved in lung carcinogenesis. In these cancers, sensitivity to inhibitors of the EGFR tyrosine kinase activity (EGFR-TKI) has been shown to be related to the presence of activating mutations in the TK domain of EGFR (mainly L858R and Del19). However, the association between mutations and responsiveness to EGFR-TKI based treatment is more complex than previously envisioned, underlying the pressing need to study thoroughly the molecular mechanisms of lung cancer growth. We previously showed that almost all lung cancer with EGFR activated mutations has very low or undetectable levels of the p14ARF tumor suppressor protein. These results led us to postulate that expression of p14ARF is an efficient break against clonal proliferation of these cells. We report for the first time a relationship between p14ARF and mutant EGFR-L858R in which p14ARF inhibits the growth of EGFR-L858R expressing cells by inducing apoptosis. The p14ARF tumor suppressor effects involve an original STAT3 pro-apoptotic function that drives the inhibition of the anti-apoptotic Bcl-2 protein. Moreover, we show that the EGFR-L858R mutant maintains their survival and proliferation characteristics by inhibiting p14ARF expression and consequently the STAT3/Bcl-2 pro-apoptotic pathway. Our results also identify p14ARF as a new transcriptional target of STAT3, therefore providing evidence of a positive feed-back loop that could maintain STAT3 pro-apoptotic pathway. Based on these data, we suggest that manipulation of this pathway could be a therapeutic strategy for lung cancer treatment.
2

Defining the Role of CtBP2 in p53-Independent Tumor Suppressor Function of ARF: A Dissertation

Kovi, Ramesh C. 11 June 2009 (has links)
ARF, a potent tumor suppressor, positively regulates p53 by antagonizing MDM2, a negative regulator of p53, which in turn, results in either apoptosis or cell cycle arrest. ARF also suppresses the proliferation of cells lacking p53, and loss of ARF in p53-null mice, compared with ARF-null or p53-null mice, results in a broadened tumor spectrum and decreased tumor latency. This evidence suggests that ARF exerts both p53-dependent and p53-independent tumor suppressor activity. However, the molecular pathway and mechanism of ARF’s p53-independent tumor suppressor activity is not understood. The antiapoptotic, metabolically regulated, transcriptional corepressor C-terminal binding protein 2 (CtBP2) has been identified as a specific target of ARF’s p53-independent tumor suppression. CtBPs are phosphoproteins with PLDLS-binding motif and NADH-binding central dehydrogenase domains. ARF interacts with CtBP1 and CtBP2 both in vitro and in vivo, and induces their proteasome-mediated degradation, resulting in p53-independent apoptosis in colon cancer cells. ARF’s ability to target CtBP2 for degradation, and its induction of p53-independent apoptosis requires an intact interaction with CtBP2, and phosphorylation at S428 of CtBP2. As targets for inhibition by ARF, CtBPs are candidate oncogenes, and their expression is elevated in a majority of human colorectal adenocarcinomas specimens in comparison to normal adjacent tissue. Relevant to its targeting by ARF, there is an inverse correlation between ARF and CtBP expression, and CtBP2 is completely absent in a subset of colorectal adenocarcinomas that retains high levels of ARF protein. CtBPs are activated under conditions of metabolic stress, such as hypoxia, and they repress epithelial and proapoptotic genes. BH3-only genes such as Bik, Bim and Bmf have been identified as mediators of ARF-induced, CtBP2-mediated p53-indpendent apoptosis. CtBP2 repressed BH3-only genes in a tissue specific manner through BKLF (Basic kruppel like factor)-binding elements. ARF regulation of BH3-only genes also required intact interaction with CtBP2. ARF antagonism of CtBP repression of Bik and other BH3-only genes may play a critical role in ARF-induced p53-independent apoptosis, and in turn, tumor suppression. To study the physiologic effect of ARF/CtBP2 interaction at the organismal level, the p19ArfL46D knock-in mice, in which the Arf/CtBP2 interaction was abrogated, was generated. Analysis of the primary cells derived from these mice, revealed that the Arf/CtBP2 interaction contributes to regulation of cell growth and cell migration. Overexpression of CtBP in human tumors, and ARF antagonism of CtBP repression of BH3-only gene expression and CtBP-mediated cell migration may therefore play a critical role in the p53-independent tumor suppressor function/s of ARF.
3

A Tale of Two ARFs: Tumor Suppressor and Anti-viral Functions of p14ARF: A Dissertation

Straza, Michael W. 21 May 2010 (has links)
Animals have evolved complicated and overlapping mechanisms to guard against the development of cancer and infection by pathogenic organisms. ARF, a potent tumor suppressor, positively regulates p53 by antagonizing p53’s negative regulator, MDM2, which in turn results in either apoptosis or cell cycle arrest. ARF also has p53-independent tumor suppressor activity. The CtBP transcriptional co-repressors promote cancer cell survival and migration/invasion. CtBP senses cellular metabolism via a regulatory dehydrogenase domain, and is a target for negative regulation by ARF. ARF targets CtBP to the proteasome for degradation, which results in the up regulation of proapoptotic BH3-only proteins, and p53-independent apoptosis. CtBP inhibition by ARF also up regulates PTEN, reducing cancer cell motility, making CtBP a potential therapeutic target in human cancer. The CtBP dehydrogenase substrate 4-methylthio-2-oxobutyric acid (MTOB) can act as a CtBP inhibitor at high concentrations, and is cytotoxic to cancer cells from a wide variety of tissues. MTOB induced apoptosis was independent of p53, and correlated with the de-repression of the pro-apoptotic CtBP repression target Bik. CtBP over-expression, or Bik silencing, rescued MTOB-induced cell death. MTOB did not induce apoptosis in mouse embryonic fibroblasts (MEFs), but was increasingly cytotoxic to immortalized and transformed MEFs, suggesting that CtBP inhibition may provide a suitable therapeutic index for cancer therapy. In human colon cancer cell peritoneal xenografts, MTOB treatment decreased tumor burden, and induced tumor cell apoptosis. To verify the potential utility of CtBP as a therapeutic target in human cancer the expression of CtBP and its negative regulator ARF was studied in a series of resected human colon adenocarcinomas. CtBP and ARF levels were inversely-correlated, with elevated CtBP levels (compared with adjacent normal tissue) observed in greater than 60% of specimens, with ARF absent in nearly all specimens exhibiting elevated CtBP levels. Targeting CtBP with a small molecule like MTOB may thus represent a useful and widely applicable therapeutic strategy in human malignancies. ARF has long been known to respond to virally encoded oncogenes. Recently, p14ARF was linked to the innate immune response to non-transforming viruses in mice. Therefore a wider role for the ARF pathway in viral infection was considered. Previous studies linking p53 to multiple points of the Human Immunodeficiency Virus-1 (HIV-1) life cycle suggested that ARF may also play a role in the HIV life cycle. In this study the interdependency of ARF and HIV infection was investigated. ARF expression was determined for a variety of cell types upon HIV infection. In every case, ARF levels exhibited dynamic changes upon HIV infection-in most cases ARF levels were reduced in infected cells. The impact of ARF over-expression or silencing by RNAi on HIV infection was also examined. Consistently, p24 levels were increased with ARF overexpression, and decreased when ARF was silenced. Thus ARF and HIV modulate each other, and ARF may paradoxically play a positive role in the HIV life cycle.
4

Frequent p16-independent inactivation of p14ARF in human melanoma

Freedberg, D.E., Rigas, S.H., Russak, J., Gai, W., Kaplow, M., Osman, I., Turner, F., Randerson-Moor, J.A., Houghton, A., Busam, K., Bishop, D.T., Bastian, B.C., Newton-Bishop, J.A., Polsky, D. January 2008 (has links)
BACKGROUND: The tumor suppressors p14(ARF) (ARF) and p16(INK4A) (p16) are encoded by overlapping reading frames at the CDKN2A/INK4A locus on chromosome 9p21. In human melanoma, the accumulated evidence has suggested that the predominant tumor suppressor at 9p21 is p16, not ARF. However, recent observations from melanoma-prone families and murine melanoma models suggest a p16-independent tumor suppressor role for ARF. We analyzed a group of melanoma metastases and cell lines to investigate directly whether somatic alterations to the ARF gene support its role as a p16-independent tumor suppressor in human melanoma, assuming that two alterations (genetic and/or epigenetic) would be required to inactivate a gene. METHODS: We examined the p16/ARF locus in 60 melanoma metastases from 58 patients and in 9 human melanoma cell lines using multiplex ligation-dependent probe amplification and multiplex polymerase chain reaction (PCR) to detect deletions, methylation-specific PCR to detect promoter methylation, direct sequencing to detect mutations affecting ARF and p16, and, in a subset of 20 tumors, immunohistochemistry to determine the effect of these alterations on p16 protein expression. All statistical tests were two-sided. RESULTS: We observed two or more alterations to the ARF gene in 26/60 (43%) metastases. The p16 gene sustained two or more alterations in 13/60 (22%) metastases (P = .03). Inactivation of ARF in the presence of wild-type p16 was seen in 18/60 (30%) metastases. CONCLUSION: Genetic and epigenetic analyses of the human 9p21 locus indicate that modifications of ARF occur independently of p16 inactivation in human melanoma and suggest that ARF is more frequently inactivated than p16.

Page generated in 0.1106 seconds