• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 6
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 89
  • 89
  • 89
  • 36
  • 25
  • 19
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Protein interaction and the subcellular localization control of the deleted in liver cancer (DLC) family protein

Chan, Lo-kong., 陳鷺江. January 2008 (has links)
published_or_final_version / Pathology / Doctoral / Doctor of Philosophy
32

Regulations and functions of rho-kinases in hepatocellular carcinoma

Wong, Chak-lui, Carmen., 黃澤蕾. January 2009 (has links)
The Best PhD Thesis in the Faculties of Dentistry, Engineering, Medicine and Science (University of Hong Kong), Li Ka Shing Prize,2008-2009 / published_or_final_version / Pathology / Doctoral / Doctor of Philosophy
33

Clonagem, expressão, purificação e caracterização estrutural da proteína ribossomal L10 humana recombinante / Cloning, periplasmic expression, purification and structural characterization of human ribosomal protein L10 recombinant

Pereira, Larissa Miranda 01 December 2009 (has links)
A proteína ribossomal L10 (RP L10) é uma forte candidata a ser incluída na classe de proteínas supressoras de tumor. Também denominada QM, a proteína em questão é conhecida por participar da ligação das subunidades ribossomais 60S e 40S e da tradução de mRNAs. Possui massa molecular entre 24 a 26 kDa e ponto isoelétrico (pI) 10,5. A seqüência da proteína QM é bastante conservada em mamíferos, plantas, invertebrados, insetos e leveduras indicando que esta possui funções críticas na célula. Com função supressora de tumor, a proteína RP L10 foi estudada em linhagens de tumor de Wilm (WT-1) e em células tumorais de estômago, nas quais se observou uma diminuição na quantidade de seu mRNA. Mais recentemente a RP L10 foi encontrada em baixas quantidades nos estágios iniciais de adenoma de próstata e com uma mutação em câncer de ovário, indicando uma participação no desenvolvimento destas doenças. Como proteína, já foi descrito que esta interage com as proteínas c-Jun e c-Yes, inibindo a ação ativadora de fatores de crescimento e divisão celular. Este trabalho tem um papel importante no estabelecimento da expressão desta proteína solúvel, para estudos posteriores que tenham como objetivo avaliar a ação de regiões específicas que atuam na ligação das subunidades ribossomais 60S e 40S e tradução, bem como nas regiões que se ligam a proto-oncogenes. O cDNA para proteína QM foi amplificado por PCR e clonado no vetor de expressão periplásmica p3SN8. A proteína QM foi expressa em E.coli BL21 (DE3) no citoplasma e periplasma bacteriano e na melhor condição, a expressão de QM de bactérias transformadas pelo plasmídeo recombinante p1813_QM em 25°C ou 30°C, a proteína foi obtida solúvel e com quantidad es muito pequenas de contaminantes. Os ensaios de estrutura secundária demonstraram que a proteína QM tem predominância de a-hélice, mas quando do seu desenovelmento, essa condição muda e a proteína passa a ter característica de folhas β. / The ribosomal protein L10 (RP L10) is a strong candidate to be included in the class of tumor suppressor proteins. This protein, also denominated as QM, is known to participate in the binding of ribosomal subunits 60S and 40S and the translation of mRNAs. It has a molecular weight that varies between 24 and 26 kDa and an isoelectric point of (pI) 10.5. The sequence of the protein QM is highly conserved in mammals, plants, invertebrates, insects and yeast which indicates its critical functions in a cell. As a tumor suppressor, RP L10 has been studied in strains of Wilm\'s tumor (WT-1) and tumor cells in the stomach, where was observed a decrease in the amount of its mRNA. More recently, the RP L10 was found in low amounts in the early stages of prostate adenoma and showed some mutation in ovarian cancer, what indicates its role as a suppressor protein in the development of these diseases. It has also been described that this protein interacts with c-Jun and c-Yes inhibiting growth factors and consequently, cell division. This work has an important role on the establishment of soluble expression of QM to give base information for further studies on expression that aim to evaluate the specific regions where it acts binding the 60S and 40S ribossomal subunits and translation, as well as its binding to proto-oncogenes. The cDNA for QM protein was amplified by PCR and cloned into periplasmic expression vector p3SN8. The QM protein was expressed in E. coli BL21 (DE3) in the region of cytoplasm and periplasm, the best condition was obtained from the expression of the recombinant plasmid QM p1813_QM at 25°C or 30°C, the soluble protein was obtained with small amounts of contaminants. The assays of secondary structure showed that the QM protein is predominantly alpha-helix, but when it loses the folding, this condition changes and the protein is replaced by β- sheet feature.
34

Ras, p63 and breast cancer

Yoh, Kathryn Elizabeth January 2016 (has links)
As a master regulator of the epithelial state, p63 is a family member of the well-known tumor suppressor p53. It has previously been connected to a cancer-associated process, epithelial-to-mesenchymal transition (EMT), and here we find that it can be regulated by oncogenes involved in breast tumorigenesis. Specifically, activated forms of PIK3CA and H-RAS are able to strongly repress expression of ∆Np63α, which is the major p63 isoform in epithelial cells. In mammary epithelial lines, this oncogene downregulation occurs at the transcriptional level, and complete repression occurs over the course of several days. As p63 is repressed, the cells undergo EMT and acquire the ability to invade individually through a 3D collagen matrix. Strikingly, even when p63 is suppressed but no oncogene action is present, these cells undergo a mesenchymal shift, suggesting the importance of this gene in maintaining the epithelial state. Furthermore, it is particularly interesting that p63 protein and RNA levels are often low in breast tumors. By connecting H-RAS and PIK3CA signaling to p63, it is hypothesized that such oncogene suppression could account for tumor progression in cases where p63 levels are low. Here, it is proposed that p63 acts in a tumor-suppressive manner, although it can be overcome by oncogenes leading to changes in differentiation state and migratory capability, therefore drastically affecting breast carcinogenesis.
35

Dissecting the role of p53-mediated metabolic regulation in tumor suppression

Ou, Yang January 2016 (has links)
The p53 tumor suppressor protein has been well-characterized for its role in inducing growth arrest, senescence, and apoptosis upon various types of stresses. Recently, however, roles of p53 have expanded beyond the canonical functions, and now include cellular processes such as metabolism, oxidative balance, and ferroptosis. Through RNA-seq screening, we first identified phosphoglycerate dehydrogenase (PHGDH), a rate-limiting enzyme in the serine biosynthesis pathway, as a novel metabolic target of p53. p53 suppresses PHGDH expression and inhibits de novo serine biosynthesis. Notably, upon serine starvation, p53-mediated cell death is significantly enhanced in response to Nutlin-3 treatment. Moreover, PHGDH has been demonstrated to be frequently amplified in human melanomas. We found that PHGDH overexpression significantly suppresses the apoptotic response, whereas RNAi-mediated knock-down of endogenous PHGDH promotes apoptosis under the same treatment. Together, our findings demonstrate an important role of p53 in regulating serine biosynthesis through suppressing PHGDH expression, and reveal serine deprivation as a novel approach to sensitize p53-mediated apoptotic responses in human melanoma cells. In addition, we also identified spermidine/spermine N1-acetyltransferase 1 (SAT1) as a novel metabolic target of p53. SAT1 is a rate-limiting enzyme in polyamine catabolism critically involved in the conversion of spermidine and spermine back to putrescine. Surprisingly, we found that activation of SAT1 expression induces lipid peroxidation and sensitizes cells to undergo ferroptosis upon reactive oxygen species (ROS)-induced stress, which also leads to suppression of tumor growth in xenograft tumor models. Notably, SAT1 expression is down-regulated in human tumors, and CRISPR-cas9-mediated knockout of SAT1 partially abrogates p53-mediated ferroptosis. Moreover, SAT1 induction is correlated with the expression levels of arachidonate 15-lipoxygenase (ALOX15), and SAT1-induced ferroptosis is significantly abrogated in the presence of PD146176, a specific inhibitor of ALOX15. Together, these data indicate a novel regulatory role of p53 in polyamine metabolism and provide insight into the regulation of p53-mediated ferroptotic responses. Our studies on PHGDH and SAT1 led us to the question of whether these unconventional functions of p53 contribute to its role as a tumor suppressor. In fact, previous view regarding the mechanism of p53-mediated tumor suppression, which was long thought to be growth arrest, apoptosis, and senescence, has recently been challenged by several knockout and knock-in mouse studies. Previously, we established mice (p533KR/3KR) in which p53 acetylation at lysine residues K117, K161, and K162 were abolished by replacing lysine with arginine. p533KR/3KR mice completely lost p53-mediated cell cycle arrest, apoptosis, and senescence functions in response to stresses. However, unlike p53-null mice which rapidly develop spontaneous thymic lymphomas, all of the p533KR/3KR mice remain tumor-free, indicating that other aspects of p53 functions are sufficient to prevent tumor formation. Notably, p533KR retains the ability to regulate metabolic targets including TIGAR and SAT1, as well as ferroptosis regulator SLC7A11. In this study, we have identified two novel acetylation sites- K98 and K136, in the mouse p53 DNA-binding domain. Whereas loss of K98 or K136 acetylation (p53K98R, p53K136R) alone has modest effect on p53 transcriptional activity, simultaneous mutations at all of these acetylation sites (p534KR98: K98R+3KR, p534KR136: K136R+3KR, p535KR: K98R+K136R+3KR) completely abolish the ability of p53 to regulate TIGAR, SAT1, and SLC7A11. In addition, p534KR98, p534KR136, and p535KR are defective in Erastin-induced ferroptosis. Notably, p534KR98/4KR98, p534KR136/4KR136, and p535KR/5KR knock-in mice lost intact tumor suppression and developed spontaneous tumors. This suggests that p53-mediated ferroptosis may function as a critical barrier to prevent tumor formation independently from growth arrest, apoptosis, and senescence. Interestingly, both p534KR98/4KR98 and p534KR136/4KR136 mice displayed significantly delayed tumorigenesis comparing with p53-null and p535KR/5KR mice. We found that unlike p535KR, p534KR98 retains the capacity to inhibit mammalian target of rapamycin (mTOR) signaling pathway through activating the expression of two mTOR negative regulators, Sestrin2 and DDIT4. Altogether, our findings underscore the extensive scope of p53 functions in metabolic regulation, oxidative stress response, and ferroptosis, and provide novel insights into the tumor suppression mechanism of p53.
36

Transcriptional control of tumor suppressor genes in cancer

Pappas, Kyrie Jean January 2017 (has links)
An important hallmark of cancer is the inactivation of tumor suppressor genes. The most common genetic alteration in cancer is the mutation of the TP53 gene occurring in about half of all cancers, but very little progress has been made on how to therapeutically target the signaling defects in these cancers. Additionally, the PTEN tumor suppressor is mutated in a wide variety of cancer types, and its expression is often lost in the absence of mutation. PTEN is a haploinsufficient tumor suppressor that exhibits dose-dependent effects in cells. In the context where PTEN is lost or downregulated, PI3K signaling and downstream signaling through AKT is overactive, leading to an increase in cell growth and proliferation, among other effects. Acting as both a protein and lipid phosphatase, loss of PTEN also affects the PI3K-independent signaling of PTEN, and results in an increase of migration and invasion phenotypes. Importantly, PTEN transcript level is the key determinant for PTEN protein expression, and downregulation of PTEN is part of a poor-prognosis gene expression signature in breast cancer. Downregulation of tumor suppressor gene expression represents a reversible change that is often sufficient to drive tumorigenesis. However, our understanding of the broad molecular mechanisms by which the expression of these tumor suppressors is lost remains limited, but is required to develop effective therapeutic strategies to target malignancies driven by tumor suppressor loss. In Chapter 2, we characterize the problem of transcriptional downregulation of PTEN in breast cancer. We investigate the expression of PTEN in various normal and tumor cells at both the transcript and protein level. We identify various model systems that we believe are suitable to model normal PTEN expression and the PTEN downregulation that mimics what is observed in tumors. We employ a sophisticated approach that couples RNA-sequencing with Nanostring nCounter analysis in order to obtain a detailed and thorough transcriptional profile of the PTEN and pseudogene PTENP1 genomic loci, as well as expression of the poor-prognosis gene signature associated with PTEN downregulation. In this study, we obtained an understanding of the changes in the PTEN transcriptional profile that occur in the progression from normal to cancer, and we believe this approach could be applied to other key tumor suppressor genes. In Chapter 3, we discovered that basally expressed p53 maintains expression of thirteen well-validated tumor suppressors. p53 is expressed at low levels under normal, low-stress conditions, and is expressed at much higher levels under enhanced stress, leading to the activation of stress-response genes. We begin the study by highlighting an association between TP53 mutation and downregulation of PTEN expression. Upon performing chromatin immunoprecipitation coupled with next generation sequencing for p53 under normal, low-stress conditions, we found that p53 binds in the vicinity of thirteen tumor suppressor genes, including PTEN. Basally expressed p53 binds to classic consensus binding sites in enhancers and promoters of target tumor suppressors to maintain their expression at baseline. CRISPR/Cas9-mediated knockout of the endogenous basal p53 binding site upstream of PTEN led to a decrease in PTEN expression and an increase in tumorigenic phenotypes. Given that mutation of TP53 leads to tumorigenesis in mice, but loss of p53 stress-response targets or loss of the ability of p53 to activate these stress-response targets does not lead to spontaneous tumorigenesis, it is likely that these tumor suppressor targets of basal p53 contribute to p53-mediated tumor suppression. In Chapter 4, we identified yet another mechanism by which transcriptional repression of PTEN occurs in triple-negative breast cancer (TNBC) through polycomb repressive complex 2 (PRC2)-mediated repression of the PTEN promoter and upstream regulatory region. Previous research has shown that mutated NOTCH1 represses PTEN through the HES-1 transcription factor in acute myeloid leukemia (AML), and that NOTCH translocations are frequent in TNBC and are sufficient for transformation in vitro. We discovered that NOTCH1 and NOTCH2 mutations and translocations correlate with PTEN downregulation by immunohistochemistry in a cohort of TNBC cases. The TNBC cell line exhibiting PRC2-mediated repression of PTEN also harbors a SEC22B-NOTCH2 translocation that creates a gene product resembling the NOTCH2 intracellular domain. The NOTCH target HES-1 co-localizes on the PTEN promoter with EZH2 (the lysine methyltransferase involved in PRC2-mediated transcriptional repression), and knockdown of NOTCH2 in this cell line led to decreased expression of EZH2, and restoration of PTEN expression at the transcript and protein level. We also demonstrated that EZH2 inhibitors, HDAC inhibitors, and DNA hypomethylating agents robustly restore PTEN transcript levels. Taken together, these results elucidate another mechanism by which PTEN is transcriptionally repressed in the highly aggressive and poor-prognosis TNBC subtype of breast cancer that may be applicable to other cancer types. The results also suggest that this repression is reversible by pharmacological approaches, highlighting a promising therapeutic avenue. Taken together, the studies presented in this thesis begin to unravel the complex mechanisms of transcriptional repression of tumor suppressor genes in cancer. As is the case with PTEN and p53, multiple regulatory mechanisms can influence expression in combination or in a context-dependent manner. The loss of expression of tumor suppressor genes is one of the key hallmarks of cancer, yet very few of the therapeutic approaches used in the clinic today aim to restore tumor suppressor expression. Our results demonstrate proof of concept that restoration of tumor suppressor expression is a plausible and promising therapeutic approach for many different types of cancer, but requires a detailed understanding of the underlying molecular mechanisms of transcriptional regulation.
37

Epigenetic disruption of tumor suppressor genes as antagonists to Ras or Wnt signaling contributes to tumorigenesis. / 針對Ras或Wnt信號通路的拮抗因子的表觀遺傳調控及功能學研究 / CUHK electronic theses & dissertations collection / Zhen dui Ras huo Wnt xin hao tong lu de jie kang yin zi de biao guan yi chuan diao kong ji gong neng xue yan jiu

January 2012 (has links)
全球人類健康的頭號殺手--腫瘤目前仍是難以攻克的醫學難題。腫瘤的發生是一個復雜的過程,主要由促癌基因的異常增多或激活及抑癌基因(TSG)的缺失或功能喪失的累積效果導致。近年來基於非基因序列改變所致基因表達水平變化的表觀遺傳學的研究進展表明,啟動子區CpG島甲基化所致的表觀遺傳沉默是抑癌基因轉錄失活的重要機制。Ras和Wnt信號轉導通路在癌病的發生和發展過程中均起到重要的作用,因此針對該兩種信號通路的拮抗因子的表觀遺傳調控及功能學研究將為我們提供有研究及應用前景的候選抑癌基因。 / 作為一種重要的原癌基因,Ras家族基因具有致癌活性的點突變及其導致的過度激活的Ras信號通路被發現廣泛存在於大約30%的人類腫瘤中。然而在一些缺乏Ras基因突變的腫瘤類型中,持續激活的Ras信號通路仍然普遍存在並具有重要作用,昭示著除了Ras基因點突變以外的信號轉導異常激活的機制。與GTP的結合可激活Ras,而RasGAP家族蛋白可通過水解GTP達到使Ras失活的作用。通過采用微陣列比較基因組雜交(aCGH)的實驗手段我們發現6p21.3染色體區具有半接合子缺失, 並於此區域發現了候選抑癌基因RASA5。在以往的研究報道中,RASA5被命名為SynGAP且其功能研究僅限於神經系統。我們的研究發現不同於RasGAP家族的其它基因RASA2-4,RASA5廣泛表達於人類正常器官組織中,並特異性地在腫瘤細胞,特別是鼻咽癌(NPC),食管鱗狀上皮細胞癌(ESCC)和乳腺癌這些具有野生型Ras基因但Ras信號通路仍被過度激活的細胞中被表觀遺傳沉默。RASA5的異位表達可有效促進腫瘤細胞的雕亡,抑制腫瘤細胞的生長、遷移及“幹性(stemness)“。同時,使用siRNA敲除內源性RASA5可以激發細胞的克隆形成及上皮-間質(EMT)轉化。RASA5的抑癌功能是通過調低Ras-GTP水平並進而抑制其下遊信號通路的活性實現的。過量表達具有致癌活性的點突變的Ras或RasGAP結構域缺失均可部分逆轉這種抑癌作用。此項研究首次證明了RASA5的抑癌功能。 / Wnt/Dvl/β-catenin信號轉導通路在人類腫瘤中存在廣泛的異常激活。我們發現DACT (Dpr/Frodo)家族成員TUSC-T2的表觀遺傳沉默是一種普遍存在於人類腫瘤中的現象。TUSC-T2編碼一種胞質蛋白,外源性表達TUSC-T2可促進腫瘤細胞雕亡並導致腫瘤細胞的克隆形成能力下降。TUSC-T2可與Dvl蛋白結合並下調其活化水平,從而保護GSK-3β蛋白不被Dvl蛋白抑制。GSK-3β可與Axin及APC蛋白形成蛋白質復合物,該復合物可捕捉並降解細胞內信號分子β-catenin。TUSC-T2的過量表達可以抑制β-catenin的激活及其向細胞核內的富集,並進一步阻止β-catenin在細胞核內與Lef/Tcf轉錄因子家族的作用及下遊特定原癌基因,例如c-Myc, CCND1及Fibronectin的表達。因此TUSC-T2具有抑制腫瘤細胞增殖、遷移及上皮-間質(EMT)轉化的作用。 / 綜上所述,我們的研究結果表明RASA5及TUSC-T2是具有抑癌功能的Ras或Wnt/Dvl/β-catenin信號轉導通路抑制因子,其表觀遺傳沉默導致的轉錄失活對於腫瘤的發生發展具有重要意義。同時,針對這兩種抑癌基因的進一步研究將為我們提供富有應用前景的腫瘤標記物。值得註意的是,RASA5課題的研究開創性地闡明了Ras信號通路的拮抗因子的表觀遺傳沉默是一種Ras信號轉導通路於腫瘤細胞中異常激活的新機制。 / Cancer is the top killer of the world, as well as the medical problem difficult to overcome. The conversion of a normal cell to a cancer cell is usually caused by upregulation of oncogenes and downregulation of tumor suppressor genes (TSGs). Epigenetic silencing has been proved to be important in TSGs inactivation, often through methylation of CpG-rich promoter regions. Ras and Wnt signaling pathways are both important for the tumorigenesis, epigenetic and functional studies of antagonists to Ras and Wnt signaling would provide us with candidate TSGs. / Ras is a well-known oncogene. Aberrant mutations of Ras genes occur in approximately 30% of human tumors, causing constitutively activated Ras signaling. However, in certain types of tumors with wild type Ras genes, abnormally activated Ras signaling is still a common and critical event, suggesting alternative mechanisms for Ras signaling hyperactivation. Ras is active when it is bound to GTP, while the hydrolysis of bound GTP and inactivation of Ras is catalyzed by Ras GTPase activating proteins (RasGAPs). Using 1-Mb array CGH (aCGH), we refined a small hemizygous deletion at the 6p21.3 chromosome region that contains a RasGAP family member gene RASA5, which used to be named as SynGAP and studied only in the neuron systems. We demonstrated that RASA5, rather than other RasGAP family members RASA2-4, is broadly expressed in human normal tissues while frequently epigenetically silenced in multiple tumors, especially in certain tumor types such as nasopharyngeal (NPC), esophageal (ESCC) and breast carcinomas (BrCa) with wild-type Ras while Ras cascade is still constitutively active. Ectopic expression of RASA5 led to apoptosis, growth and migration inhibition, as well as ‘stemness’ repression of tumor cells. Meanwhile, knockdown of RASA5 by siRNA promoted the tumor cell colony formation as well as epithelial-mesenchymal transition (EMT). The tumor-suppressive function of RASA5 was exerted through downregulating Ras-GTP level and further inactivating Ras signaling. Such an inhibitory effect could be partially abrogated in the presence of mutated, activated Ras or by deletion of the RasGAP domain. For the first time, our study refined the role of RASA5 as a tumor suppressor. / Wnt/DVL/β-catenin signaling pathway is aberrantly activated in a wide range of human cancers. We identified a DACT (Dpr/Frodo) family member TUSC-T2 as an epigenetically downregulated gene in human tumors. TUSC-T2 encodes a punctate cytoplasmic protein. Ectopic expression of TUSC-T2 dramatically inhibited tumor cell colony formation in silenced tumor cell lines, mainly through inducing apoptosis. TUSC-T2 interacts and downregulates Dishevelled (Dvl) protein, thus protecting glycogen synthase kinase 3β (GSK-3β) from inactivation by Wnt/Dvl and allowing GSK-3β to form a complex with Axin and APC to promote the phosphorylation and proteasomal degradation of β-catenin. Overexpression of TUSC-T2 disrupted β-catenin activation and accumulation in nuclei, thus preventing its binding to transcription factors of the Lef/Tcf family. This caused the downregulation of β-catenin target oncogenes such as c-Myc, CCND1 and Fibronectin as well as the inhibition of tumor cell proliferation and migration. We also observed that TUSC-T2 could inhibit tumor cell EMT. / Taken together, our data demonstrate that RASA5 and TUSC-T2 are functional tumor suppressors epigenetically silenced in multiple tumors through acting as negative regulators of the Ras or Wnt/Dvl/β-catenin cancer pathways, and could be developed as promising biomarkers for human tumors. Of note, our study reveals that epigenetic silencing of the Ras antagonist represents a new mechanism responsible for Ras aberrant activation in cancers with wild-type Ras. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Fan, Yichao. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 184-216). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Acknowledgements --- p.i / List of abbreviations --- p.ii-iii / List of tables --- p.iv / List of Figures --- p.v-vii / List of Publications --- p.viii-ix / Abstract in English --- p.x-xii / Abstract in Chinese --- p.xiii-xiv / Table of Contents --- p.xv / Chapter Chapter 1 --- Introduction and Literature Review --- p.1 / Chapter 1.1 --- Cancer epigenetics --- p.4 / Chapter 1.1.1 --- Epigenetic modifications --- p.5 / Chapter 1.1.1.1 --- DNA Methylation --- p.5 / Chapter 1.1.1.2 --- Histone modifications --- p.10 / Chapter 1.1.1.3 --- RNA interference --- p.14 / Chapter 1.1.1.4 --- Nucleosome positioning --- p.15 / Chapter 1.1.2 --- Epigenetic alteration induced Tumor suppressor genes (TSGs) silencing during carcinogenesis --- p.17 / Chapter 1.2 --- Epigenetic alterations in cancer pathways --- p.23 / Chapter 1.2.1 --- Brief introduction of cancer pathways --- p.23 / Chapter 1.2.2 --- Ras pathway --- p.25 / Chapter 1.2.2.1 --- Ras pathway and carcinogenesis --- p.25 / Chapter 1.2.2.2 --- Epigenetic regulation of RasGAP proteins in carcinogenesis --- p.28 / Chapter 1.2.2.3 --- Epigenetic silencing of other negative regulators of Ras signaling --- p.30 / RAS association domain family (RASSF) proteins --- p.30 / PTEN --- p.32 / Sprouty (SPRY) proteins --- p.33 / Chapter 1.2.2.4 --- Hypomethylation induced Ras oncogenes activation --- p.35 / Chapter 1.2.2.5 --- Ras mediates epigenetic regulation through feedback loop --- p.36 / Chapter 1.2.3 --- Wnt pathway --- p.43 / Chapter 1.2.3.1 --- Wnt signaling pathway and carcinogenesis --- p.43 / Chapter 1.2.3.2 --- Epigenetic silencing of negative regulators of Wnt signaling --- p.45 / Chapter 1.2.3.3 --- DACT family proteins and carcinogenesis --- p.48 / Chapter 1.3 --- Application of tumor specific epigenetic alterations as tumor biomarkers and therapeutic targets --- p.49 / Chapter 1.3.1 --- The potential and advantage of tumor specific epigenetic alterations used as tumor biomarkers and therapeutic targets --- p.49 / Chapter 1.3.2 --- Epigenetic-disrupted regulators of Ras signaling as tumor biomarkers and therapeutic targets --- p.50 / Chapter 1.3.3 --- Epigenetic-disrupted regulators of Wnt signaling as tumor biomarkers and therapeutic targets --- p.52 / Chapter Chapter 2 --- Aims of this study --- p.54 / Chapter 2.1 --- To identify epigenetically silenced candidate TSGs as antagonists to Ras or Wnt signaling --- p.55 / Chapter 2.2 --- To elucidate the functional of candidate TSGs --- p.56 / Chapter Chapter 3 --- Materials and Methods --- p.57 / Chapter 3.1 --- Cell lines, tumor samples and routine cell line maintenance --- p.57 / Chapter 3.2 --- Drug and stress treatments --- p.59 / Chapter 3.3 --- DNA and RNA extraction --- p.59 / Chapter 3.4 --- Semi-quantitative RT-PCR and Real time PCR --- p.60 / Chapter 3.5 --- Direct sequencing of PCR products --- p.67 / Chapter 3.6 --- CpG island analysis --- p.67 / Chapter 3.7 --- Bisulfite treatment --- p.67 / Chapter 3.8 --- Methylation-specific PCR (MSP) and bisulfite genomic sequencing --- p.68 / Chapter 3.9 --- Plasmid extraction --- p.69 / Chapter 3.9.1 --- Bacteria culture --- p.69 / Chapter 3.9.2 --- Mini-scale preparation of plasmid DNA --- p.70 / Chapter 3.9.3 --- Large-scale endotoxin-free plasmids extraction --- p.71 / Chapter 3.10 --- Construction of expression plasmids --- p.71 / Chapter 3.10.1 --- Gene cloning and plasmids construction of RASA5 --- p.71 / Chapter 3.10.2 --- Gene cloning and plasmids construction of TUSC-T2 --- p.74 / Chapter 3.11 --- Immunofluorescence Staining --- p.74 / Chapter 3.12 --- Colony formation assay --- p.76 / Chapter 3.13 --- Apoptosis assay --- p.77 / Chapter 3.14 --- Luciferase reporter assay --- p.78 / Chapter 3.15 --- Protein preparation and Western blot --- p.79 / Chapter 3.16 --- Ras Activity Assay --- p.80 / Chapter 3.17 --- Wound healing assay --- p.81 / Chapter 3.18 --- Matrigel invasion assay --- p.81 / Chapter 3.19 --- RNA Interference --- p.81 / Chapter 3.20 --- Statistical analysis --- p.82 / Chapter Chapter 4: --- Epigenetic disruption of Ras signaling through silencing of a Ras GTPase-activating protein RASA5 in human cancers --- p.83 / Chapter 4.1 --- Identification of RASA5 as a downregulated gene residing in the 6p21.3 deletion region --- p.86 / Chapter 4.2 --- RASA5 is widely expressed in human normal tissues but downregulated in tumor cell lines --- p.91 / Chapter 4.3 --- The tumor-specific downregulation pattern of RASA5 is unique in the RASA family genes --- p.95 / Chapter 4.4 --- RASA5 promoter CpG methylation resulted in its transcription inactivation --- p.96 / Chapter 4.5 --- Frequent methylation of RASA5 promoter in multiple primary tumors --- p.101 / Chapter 4.6 --- Cloning and characterization of human RASA5 --- p.104 / Chapter 4.7 --- RASA5 inhibits tumor cell clonogenicity through inducing apoptosis --- p.108 / Chapter 4.8 --- RasGAP domain is required for the tumor suppressive function of RASA5 --- p.111 / Chapter 4.9 --- Certain cancer types harbor wild type Ras but active Ras signaling, with RASA5 epigenetically silenced --- p.114 / Chapter 4.10 --- RASA5 antagonizes Ras signaling pathway --- p.117 / Chapter 4.10.1 --- RASA5 represses Ras signaling through downregulating Ras-GTP level --- p.117 / Chapter 4.10.2 --- Oncogenic mutant form of Ras abrogated colony formation inhibitory effect of RASA5 on tumor cells --- p.120 / Chapter 4.10.3 --- Knockdown of RASA5 promoted the tumor cell colony formation and Ras signaling activation --- p.122 / Chapter 4.10.4 --- RASA5 inhibits ERK1/2 nuclei translocation and activation --- p.123 / Chapter 4.10.5 --- RASA5 negatively regulates Ras target gene expression --- p.125 / Chapter 4.11 --- RASA5 inhibits tumor cell migration and invasion through the Ras/Rac/cofilin signaling --- p.127 / Chapter 4.12 --- RASA5 suppresses tumor cell epithelial-mesenchymal transition (EMT) and stemness --- p.133 / Chapter 4.13 --- RASA5 appears in the cellcell interaction region nanotubes --- p.139 / Chapter 4.14 --- Discussion --- p.141 / Chapter Chapter 5: --- The Wnt/Dvl signaling antagonist TUSC-T2 is a pro-apoptotic tumor suppressor epigenetically silenced in tumors and inhibits tumor cell proliferation and migration --- p.150 / Chapter 5.1 --- Expression of TUSC-T2 is downregulated in human tumors --- p.150 / Chapter 5.2 --- TUSC-T2 promoter methylation results in its transcriptional inactivation --- p.151 / Chapter 5.3 --- Cloning and characterization of TUSC-T2 --- p.155 / Chapter 5.4 --- TUSC-T2 inhibits tumor cell clonogenicity through inducing apoptosis --- p.157 / Chapter 5.5 --- TUSC-T2 inhibits Wnt/Dvl/β-catenin pathway --- p.161 / Chapter 5.6 --- TUSC-T2 suppresses cell migration and EMT through upregulating E-cadherin --- p.165 / Chapter 5.7 --- Discussion --- p.171 / Chapter Chapter 6: --- Conclusions --- p.176 / Chapter 6.1. --- RasGAP family member RASA5 is epigenetically silenced in human cancers, acting as a tumor suppressor through negatively regulating Ras signaling --- p.177 / Chapter 6.2. --- DACT family member TUSC-T2 functions as a candidate TSG silenced by promoter methylation and inhibits Wnt/Dvl/β-catenin pathway --- p.178 / Chapter Chapter 7: --- Future Studies --- p.181 / Chapter 7.1. --- Further functional study of RASA5 and TUSC-T2 --- p.181 / Chapter 7.2. --- Clinical application of epigenetic silenced candidate TSGs --- p.182 / Chapter 7.3. --- Further screening of candidate TSGs as antagonists to cancer pathways --- p.183 / Reference list --- p.184
38

Clonagem, expressão, purificação e caracterização estrutural da proteína ribossomal L10 humana recombinante / Cloning, periplasmic expression, purification and structural characterization of human ribosomal protein L10 recombinant

Larissa Miranda Pereira 01 December 2009 (has links)
A proteína ribossomal L10 (RP L10) é uma forte candidata a ser incluída na classe de proteínas supressoras de tumor. Também denominada QM, a proteína em questão é conhecida por participar da ligação das subunidades ribossomais 60S e 40S e da tradução de mRNAs. Possui massa molecular entre 24 a 26 kDa e ponto isoelétrico (pI) 10,5. A seqüência da proteína QM é bastante conservada em mamíferos, plantas, invertebrados, insetos e leveduras indicando que esta possui funções críticas na célula. Com função supressora de tumor, a proteína RP L10 foi estudada em linhagens de tumor de Wilm (WT-1) e em células tumorais de estômago, nas quais se observou uma diminuição na quantidade de seu mRNA. Mais recentemente a RP L10 foi encontrada em baixas quantidades nos estágios iniciais de adenoma de próstata e com uma mutação em câncer de ovário, indicando uma participação no desenvolvimento destas doenças. Como proteína, já foi descrito que esta interage com as proteínas c-Jun e c-Yes, inibindo a ação ativadora de fatores de crescimento e divisão celular. Este trabalho tem um papel importante no estabelecimento da expressão desta proteína solúvel, para estudos posteriores que tenham como objetivo avaliar a ação de regiões específicas que atuam na ligação das subunidades ribossomais 60S e 40S e tradução, bem como nas regiões que se ligam a proto-oncogenes. O cDNA para proteína QM foi amplificado por PCR e clonado no vetor de expressão periplásmica p3SN8. A proteína QM foi expressa em E.coli BL21 (DE3) no citoplasma e periplasma bacteriano e na melhor condição, a expressão de QM de bactérias transformadas pelo plasmídeo recombinante p1813_QM em 25°C ou 30°C, a proteína foi obtida solúvel e com quantidad es muito pequenas de contaminantes. Os ensaios de estrutura secundária demonstraram que a proteína QM tem predominância de a-hélice, mas quando do seu desenovelmento, essa condição muda e a proteína passa a ter característica de folhas β. / The ribosomal protein L10 (RP L10) is a strong candidate to be included in the class of tumor suppressor proteins. This protein, also denominated as QM, is known to participate in the binding of ribosomal subunits 60S and 40S and the translation of mRNAs. It has a molecular weight that varies between 24 and 26 kDa and an isoelectric point of (pI) 10.5. The sequence of the protein QM is highly conserved in mammals, plants, invertebrates, insects and yeast which indicates its critical functions in a cell. As a tumor suppressor, RP L10 has been studied in strains of Wilm\'s tumor (WT-1) and tumor cells in the stomach, where was observed a decrease in the amount of its mRNA. More recently, the RP L10 was found in low amounts in the early stages of prostate adenoma and showed some mutation in ovarian cancer, what indicates its role as a suppressor protein in the development of these diseases. It has also been described that this protein interacts with c-Jun and c-Yes inhibiting growth factors and consequently, cell division. This work has an important role on the establishment of soluble expression of QM to give base information for further studies on expression that aim to evaluate the specific regions where it acts binding the 60S and 40S ribossomal subunits and translation, as well as its binding to proto-oncogenes. The cDNA for QM protein was amplified by PCR and cloned into periplasmic expression vector p3SN8. The QM protein was expressed in E. coli BL21 (DE3) in the region of cytoplasm and periplasm, the best condition was obtained from the expression of the recombinant plasmid QM p1813_QM at 25°C or 30°C, the soluble protein was obtained with small amounts of contaminants. The assays of secondary structure showed that the QM protein is predominantly alpha-helix, but when it loses the folding, this condition changes and the protein is replaced by β- sheet feature.
39

Insight into the Reactivity of Metastasis Inhibitor, Imidazolium trans-[tetrachloro (dimethyl sulfoxide)(imidazole)ruthenate(III)], with Biologically-active Thiols

Adigun, Risikat Ajibola 01 January 2012 (has links)
Imidazolium trans-[tetrachloro (dimethyl sulfoxide)(imidazole)ruthenate(III)], NAMI-A, is an experimental metastasis inhibitor whose specific mechanism of activation and action remains to be elucidated. In the nucleophilic and reducing physiological environment; it is anticipated that the most relevant and available reductants upon introduction of NAMI-A as a therapeutic agent will be the biologically-relevant free thiols. The kinetics and mechanisms of interaction of NAMI-A with biologically-active thiols cysteamine, glutathione, cysteine and a popular chemoprotectant, 2-mercaptoethane sulfonate (MESNA) have been studied spectrophotometrically under physiologically-relevant conditions. The reactions are characterized by initial reduction of NAMI-A with simultaneous formation of dimeric thiol and subsequent ligand exchange with water to various degrees as evidenced by Electospray Ionization Mass Spectrometry. Stoichiometry of reactions shows that one molecule of NAMI-A reacted with one mole of thiol to form corresponding disulfide cystamine, dimeric MESNA, oxidized glutathione and cystine. Observed rate constants, ko, for the reaction of NAMI-A with cysteamine, MESNA, GSH and cysteine were deduced to be 6.85 + 0.3 x 10-1, 9.4 + 0.5 x 10-2 , 7.42 + 0.4 x 10-3 and 3.63 + 0.3 x 10-2 s-1 respectively. Activation parameters determined from Arrhenius plots are indicative of formation of associative intermediates prior to formation of products. A negative correlation was obtained from the Brønsted plot derived from observed rate constants and the pKa of the different thiols demonstrating significant contribution of thiolate species towards the rate. In conclusion, interactions of NAMI-A with biologically-active thiols are kinetically and thermodynamically favored and should play significant roles in in vivo metabolism of NAMI-A.
40

Structural characterization and domain dissection of human XAF1 protein, and application of solvent-exposed-amide spectroscopy inmapping protein-protein interface

Tse, Man-kit., 謝汶桀. January 2009 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy

Page generated in 0.0881 seconds