Spelling suggestions: "subject:"tumor suppressor proteins"" "subject:"humor suppressor proteins""
71 |
The role of the small Rho GTPases in the signaling mechanisms mediated by the netrin-1 receptor UNC5aPicard, Mariève. January 1900 (has links)
Thesis (M.Sc.). / Written for the Dept. of Anatomy and Cell Biology. Title from title page of PDF (viewed 2008/07/30). Includes bibliographical references.
|
72 |
The role of DEC1 in P53-dependent cellular senescenceQian, Yingjuan, January 2008 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed on June 26, 2009). Includes bibliographical references.
|
73 |
Molecular regulation of the breast and ovarian tumor suppressors BRCA1 and BRCA2 /Nelson, Andrew Cook. January 2007 (has links)
Thesis (Ph.D. in Experimental Pathology, Program in Cancer Biology) -- University of Colorado Denver, 2007. / Typescript. Includes bibliographical references (leaves 144-158). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
|
74 |
The Role of the SWI/SNF Component INI1 in Mammalian Development and Tumorigenesis: a DissertationGuidi, Cynthia J. 14 February 2003 (has links)
In vivo DNA is compacted tightly, via its association with histones and non-histone proteins, into higher-order chromatin structure. In this state, the DNA is refractory to the cellular factors that require access to DNA. The repressive nature of chromatin is alleviated in part by the action enzymes that modify chromatin structure. There are two major groups of chromatin modifying enzymes: those that post-translationally modify histones by the addition of small chemical moieties and those that utilize the energy derived from ATP hydrolysis to physically disrupt chromatin structure. The SWI/SNF enzyme belongs to this latter group.
The SWI/SNF complex was identified originally in yeast. Several of its subunits are required for the expression of a subset of inducible genes. The ATPase activity is provided by the SWI2/SNF2 protein. In mammals, there are two biochemically separable SWI/SNF complexes that contain either BRG1 or BRM, both homologs of yeast SWI2/SNF2. The yeast and mammalian SWI/SNF complexes are able to disrupt the Dnase I digestion pattern of in vitro assembled mononucleosomes and arrays, as well as facilitate the accessibility of restriction nucleases and transcription factors. The mechanism by which SWI/SNF functions has yet to be elucidated.
SNF5 is a component of the yeast SWI/SNF complex. It is required for sucrose fermentation and mating type switching. The mammalian homolog of Snf5 is SNF5/INI1. SNF5/INI1 was identified simultaneously by two groups as a protein that shares homology with Snf5 and via a yeast two hybrid assay as a protein that interacts with HIV integrase (INtegrase Interactor). INI1 is a component of all mammalian SWI/SNF complexes purified to date.
In humans, mutations and/or deletions in INI1 are associated with a variety of cancers, including malignant rhabdoid tumors, choroid plexus carcinomas, medullablastomas, primitive neuralectodermal tumors, and some cases of leukemia. Furthermore, constitutional mutations within INI1in individuals presenting with these tumors support the role of INI1 as a tumor suppressor.
In this thesis, we show that Ini1 also functions as a tumor suppressor in mice. Approximately 20% of mice heterozygous for Ini1 present with tumors. Most of these tumors are undifferentiated or poorly differentiated sarcomas with variable rhabdoid features. All tumors examined to date show loss of heterozygosity at the Ini1 locus. We also show that Ini1 is essential for embryonic development. Mice homozygous-null for Ini1die between days 4 and 5.5 post-fertilization due to an inability to adhere to their substratum, form trophectoderm, and expand their inner cell mass.
We further characterize the function of Ini1 in tumor suppression by generating mice heterozygous for both Ini1 and either Rb or p53. While heterozygosity at the Ini1 locus appears to have no effect on the rate of tumorigenesis in Rb-heterozygous mice, many of the tumors arising in compound heterozygous mice present with an altered morphology. This finding suggests that Ini1 may contribute to tumor progression due to loss of Rb. In contrast, mice compound heterozygous for Ini1 and p53 show a marked reduction in the rate of tumorigenesis compared to p53-heterozygous mice. Furthermore, the tumor spectrum is altered in these compound heterozygous mice. These findings suggest that Ini1 may function normally to repress p53 activity.
Lastly, we show that expression of the Ini1 tumor suppressor itself is regulated tightly. Tissues and cells heterozygous for Ini1 express roughly equivalent levels of Ini1 protein and mRNA as their wild-type counterparts. We further show that this compensation is mediated by an increase in the rate of transcription from the wild-type Ini1 allele. Moreover, when exogenous Ini1 is introduced into Ini1-heterozygous cells, expression from the Ini1 promoter is reduced. These data indicate that a compensatory mechanism exists to ensure that the steady-state levels of Ini1 are constant.
In summary, research detailed in this thesis has contributed to our understanding of the regulation of Ini1 as well as the role this protein plays in mammalian development and tumor suppression.
|
75 |
Pathways Linking Deregulated Proliferation to Apoptosis: a DissertationRogoff, Harry A. 29 April 2004 (has links)
Proper regulation of cellular proliferation is critical for normal development and cancer prevention. Most, if not all, cancers contain mutations in the Rb/E2F pathway, which controls cellular proliferation. Inactivation of the retinoblastoma protein (Rb) can occur through Rb loss, mutation, or inactivation by cellular or viral oncoproteins leading to unrestrained proliferation. This occurs primarily by de-repression and activation of the E2F transcription factors, which promote the transition of cells from the G1to S phase of the cell cycle. In order to protect against loss of growth control, the p53 tumor suppressor is able to induce programmed cell death, or apoptosis, in response to loss of proper Rb cell cycle regulation.
E2F1 serves as the primary link between the Rb growth control pathway and the p53 apoptosis pathway. While the pathway(s) linking E2F1 to p53 activation and apoptosis are unclear, it has been proposed that E2F1 activates p53-dependent apoptosis by transactivation of p19ARF leading to inhibition of Mdm2-promoted degradation of p53. We tested this hypothesis, and found that p19ARFis not required for E2F1-induced apoptosis. Instead, we find that expression of E2F1 leads to covalent modifications of p53 that correlate with p53 activation and are required for apoptosis.
The observation that E2F1 induces covalent modification of p53 is consistent with the p53 modifications observed following DNA damage. We therefore hypothesized that E2F1 may be activating components of the DNA damage response to activate p53 and kill cells. Consistent with the DNA damage response, we find that E2F1-induced apoptosis is compromised in cells from patients with the related disorders ataxia telangiectasia and Nijmegen breakage syndrome, lacking functional Atm and Nbs1 gene products, respectively. E2F1-induced apoptosis and p53 modification also requires the human checkpoint kinase Chk2, another component of the DNA damage response. We find that the commitment step in E2F1-induced apoptosis is the induction of Chk2.
Having found that E2F1 requires DNA damage kinases to induce apoptosis, we next examined events upstream of kinase activation. To this end, we observe relocalization of the DNA damage repair MRN complex (composed of Mre11, Nbs1, and Rad50) to nuclear foci specifically following expression of E2F1. Expression of E2F1 also induces relocalization of the DNA damage recognition proteins γH2AX and 53BP1 to nuclear foci, consistent with the location of these complexes observed following DNA double strand breaks. As a consequence of activating some or all of these DNA damage signaling proteins, expression of E2F1 blocks cell cycle progression in diploid human fibroblasts. The observed block in cell cycle progression is found to be, in part, due to activation of a p21-dependent cell cycle checkpoint.
The E7 protein from the oncogenic human papillomavirus (HPV) is able to bind to and inactivate members of the Rb family. HPV infects quiescent, non-cycling cells that lack expression of DNA replication machinery that is essential for replication of the viral genome. By expression of the E7 protein, HPV is able to bypass normal Rb-mediated growth control and induce quiescent cells to enter S phase where the host cell DNA replication enzymes are present for viral replication. We find that expression of E7 can also result in apoptosis that is dependent specifically on E2F1. Additionally, E7-induced apoptosis, like E2F1-induced apoptosis, requires Atm, Nbs1, and Chk2. Expression of E7, like that of E2F1, induces E2F1-dependent covalent modification of p53 that correlates with apoptosis induction.
These findings demonstrate that deregulation of the Rb/E2F growth control pathway leads to activation of an apoptosis program with some similarity to the pathways activated by DNA damage. Our observations suggest that E2F1 not only functions as a sensor for deregulation of Rb, but may also play an important role in regulating cellular growth control in response to other oncogenic stimuli.
|
76 |
Análise do gene KISS1 nos distúrbios puberais humanos / KISS1 gene analysis in patients with central pubertal disordersLetícia Ferreira Gontijo Silveira 05 March 2009 (has links)
A kisspeptina, codificada pelo gene KISS1, é um neuropeptídeo crucial na regulação do início da puberdade. A kisspeptina estimula a secreção hipotalâmica do hormônio liberador de gonadotrofinas (GnRH) após se ligar ao seu receptor GPR54. Mutações inativadoras do GPR54 são atualmente consideradas como uma causa rara de hipogonadismo hipogonadotrófico isolado (HHI) normósmico. Recentemente, uma mutação ativadora no receptor GPR54 foi implicada na patogênese da puberdade precoce dependente de gonadotrofinas (PPDG). Com base nesses achados, levantamos a hipótese de que alterações no gene KISS1 poderiam contribuir para a patogênese de distúrbios puberais centrais. O objetivo do presente estudo foi investigar a presença de variantes no gene KISS1 em pacientes com PPDG e HHI. Sessenta e sete crianças brasileiras com PPDG (63 meninas e 4 meninos) e 61 pacientes com HHI (40 homens e 21 mulheres) foram selecionados, incluindo casos esporádicos e familiares em ambos os grupos. A população controle consistiu de 200 indivíduos com história de desenvolvimento puberal normal. A região promotora e os 3 exons do gene KISS1 foram amplificados e submetidos a sequenciamento automático. Duas novas variantes no gene KISS1, p.P74S e p.H90D, foram identificadas em duas crianças não relacionadas, portadoras de PPDG idiopática. Ambas as variantes estão localizadas na região amino-terminal da kisspeptina-54 e estavam ausentes em 400 alelos controles. A variante p.P74S foi identificada em heterozigose em um menino que desenvolveu puberdade com um ano de idade. Sua mãe e avó materna, que apresentavam história de desenvolvimento puberal normal, eram portadoras da mesma variante em heterozigose, sugerindo penetrância incompleta e/ou herança sexo-dependente. A variante p.H90D foi identificada em homozigose em uma menina com PPDG, que desenvolveu puberdade aos seis anos de idade. Sua mãe, com história de menarca aos dez anos de idade, era portadora da mesma variante em heterozigose. Células transfectadas estavelmente com GPR54 foram estimuladas com concentrações crescentes de kisspeptina-54 (kp-54) humana selvagem ou contendo as mutações (kp-54 H90D e kp-54 P74S) e o acúmulo de fosfato de inositol (IP) foi medido. Nos estudos in vitro, a kp-54 P74S apresentou uma capacidade de ativação do receptor GPR54 semelhante à kp-54 selvagem. A kp-54 p.H90D mostrou uma ativação da sinalização do receptor significativamente mais potente que a kp-54 selvagem, sugerindo que essa é uma mutação ativadora. No grupo de HHI, uma nova variante (c.588-589insT) foi identificada em heterozigose na região 3 não traduzida do gene KISS1 em um paciente do sexo masculino. O papel dessa variante no fenótipo de HHI permanece indeterminado. Em conclusão, duas mutações no gene KiSS1 foram descritas pela primeira vez em associação com PPDG. / Kisspeptin, encoded by the KISS1 gene, is an important regulator of puberty onset. After binding to its receptor GPR54, kisspeptin stimulates gonadotropin-releasing hormone secretion by the hypothalamic neurons. Inactivating GPR54 mutations are a rare cause of normosmic isolated hypogonadotropic hypogonadism (IHH). Recently, a unique GPR54 activating mutation was implicated in the pathogenesis of gonadotropin dependent precocious puberty (GDPP). Based on these observations, we hypothesized that mutations in the KISS1 gene might be associated with central pubertal disorders. The aim of this study was to investigate KISS1 mutations in idiopathic GDPP and normosmic IHH. Sixty-seven Brazilian children (63 girls and 4 boys) with idiopathic GDPP and 61 patients with normosmic IHH (40 men and 21 women) were selected. Familial and sporadic cases were included in both groups. The control population consisted of 200 individuals who had normal timing of puberty. The promoter region and the 3 exons of the KISS1 gene were amplified and automatically sequenced. Two novel KISS1 missense mutations, p.P74S and p.H90D, were identified in two unrelated children with idiopathic GDPP. Both mutations were absent in 400 control alleles and are located in the amino-terminal region of kisspeptin-54. The p.P74S mutation was identified in the heterozygous state in a boy who developed puberty at 1 yr of age. His mother and maternal grandmother, who had normal pubertal development, were also heterozygous for the p.P74S mutation, suggesting incomplete penetrance and/or sex-dependent inheritance. The p.H90D mutation was identified in the homozygous state in a girl with GDPP, who developed puberty at 6 yr of age. Her mother, who had menarche at 10 yr of age, carried the p.H90D mutation in the heterozygous state. CHO cells stably transfected with GPR54 were stimulated with different concentrations of synthetic human wild type or mutant kisspeptin-54 (KP54) and inositol phosphate (IP) accumulation was measured. In vitro studies revealed that the capacity of the p.P74S mutant KP54 to stimulate IP production was similar to the wild type. The p.H90D kisspeptin-54 showed a significantly more potent activation of GPR54 signaling in comparison to the wild type in vitro, suggesting a gain-of-function mutation. In the IHH group, a heterozygous variant in the 3 UTR of the KISS1 gene (c.588-589insT) was identified. The role of this variant in the IHH phenotype remains to be determined. In conclusion, two KiSS1 mutations were described for the first time in association with GDPP.
|
77 |
Mdm2 and Mdm4 Functions in Growth Control: a DissertationSteinman, Heather Anne 01 June 2004 (has links)
Amplification and/or overexpression of the Mdm2 oncogene occurs in many human cancers. Mdm2 promotes cellular proliferation, interferes with apoptosis, and induces tumor formation through the negative regulation of the p53 tumor suppressor. More than thirty percent of human tumors overexpressing Mdm2 also present with alternatively spliced Mdm2 isoforms that cannot directly bind p53. The presence of Mdm2 isoforms in tumors correlates with a higher tumor grade and a poorer prognosis for the patient. To investigate the function of Mdm2 isoforms in tumorigenesis, we have isolated a number of Mdm2 splice forms from tumors obtained from Mdm2-transgenic mice and find that the most frequently observed splice form in human tumors, Mdm2-b, is conserved in mice. Although the Mdm2-b protein is incapable of binding to p53 and is unable to localize to the nucleus, we demonstrate that Mdm2-b promotes cell growth in NIH3T3 cells, Rb-deficient, p19-deficient, and p53-deficient primary cells. We also show that Mdm2-b inhibits apoptosis in response to serum withdrawal and restimulation, doxorubicin treatment, and TNF-alpha administration. Mdm2-b induces foci formation in vitro and directly contributes to tumor formation in GFAP-Mdm2 transgenic mice. We propose that Mdm2-b promotes tumor growth by upregulating RelA (P65) protein levels and activity in a p53-independent manner. To better understand additional functions of Mdm2 that are p53-dependent, we have generated an Mdm2 conditional mouse model. Using primary mouse embryonic fibroblasts derived from Mdm2 conditional mice, we demonstrate that p21 is required for p53-dependent apoptosis initiated by Mdm2 loss. In support of this observation, we also note that p21-loss partially rescues embryonic lethality of Mdm2 null mice. We further show that p21-loss partially rescues the embryonic lethality caused by the loss of the Mdm2 family member, Mdm4. We address the possibility that Mdm2 and Mdm4 may play redundant roles during embryonic development and find that Mdm2 overexpression fully rescues the embryonic lethality resulting from Mdm4 loss. Our findings demonstrate that both Mdm2 and Mdm4 play critical roles in modulation of the p53 tumor suppressor pathway and that their deregulation can result in tumor formation through both p53-dependent and independent pathways.
|
78 |
Antagonistic Pleiotropy: The Role of Smurf2 in Cancer and Aging: A DissertationRamkumar, Charusheila 01 June 2012 (has links)
In response to telomere shortening, oxidative stress, DNA damage or aberrant activation of oncogenes, normal somatic cells exit the cell cycle and enter an irreversible growth arrest termed senescence. The limited proliferative capacity imposed by senescence on cells impedes the accumulation of mutations necessary for tumorigenesis and prevents proliferation of cells at risk of neoplastic transformation. Opposite to the tumor suppressor function, accumulation of senescent cells in adult organisms is thought to contribute to aging by depleting the renewal capacity of tissues and stem/progenitor cells, and by interfering with tissue homeostasis and functions. The Antagonistic Pleiotropy Theory of senescence proposes that senescence is beneficial early in life by acting as a tumor suppressor, but harmful late in life by contributing to aging. Recent studies have provided evidence strongly supporting the tumor suppressor function of senescence, however, direct evidence supporting the role of senescence in aging remains largely elusive.
In this thesis, I describe studies to test the Antagonistic Pleiotropy Theory of senescence in tumorigenesis and aging. The approach that I have taken is to alter the senescence response in vivo by changing the expression of a senescence regulator in mice. The consequence of altered senescence response on tumorigenesis and stem cell self-renewal was investigated. The senescence regulator I studied is Smurf2, which has been shown previously to activate senescence in culture. I hypothesized that the senescence response will be impaired by Smurf2 deficiency in vivo. Consequently, Smurf2-deficient mice will develop tumors at an increased frequency, but also gain enhanced self-renewal capacity of stem/progenitor cells with age.
I generated a Smurf2-deficient mouse model, and found that Smurf2 deficiency attenuated p16 expression and impaired the senescence response in primary cells and tissues. Smurf2-deficient mice exhibited an increased susceptibility to spontaneous tumorigenesis, indicating that Smurf2 is a tumor suppressor. At the premalignant stage of tumorigenesis, a defective senescence response was documented in the Smurf2-deficient mice, providing a mechanistic link between impaired senescence response and increased tumorigenesis. The majority of tumors developed in Smurf2-deficent mice were B-cell lymphomas with an origin in germinal centers of the spleen and a phenotype resembling human diffuse large B-cell lymphoma (DLBCL). I discovered that Smurf2 mediated ubiquitination of YY1, a master regulator of germinal centers. Stabilization of YY1 in the absence of Smurf2 was responsible for increased cell proliferation and drove lymphomagenesis in Smurf2-deficient mice. Consistently, a significant decrease of Smurf2 expression was observed in human primary DLBCL samples, and more importantly, a low level of Smurf2 expression in DLBCL correlated with poor survival prognosis. Moreover, I found that hematopoietic stem cells (HSCs) in Smurf2-deficient mice had enhanced function compared to wild-type controls. This enhanced stem cell function was associated with increased cell proliferation and decreased p16 expression, suggesting that defective senescence response in Smurf2-deficient mice leads to increased self-renewal capacity of HSCs. My study, for the first time, offers direct genetic evidence of an important tumor suppressor function for Smurf2 as well as its function in contributing to stem cell aging. Collectively, these findings provide strong evidence supporting the Antagonistic Pleiotropy Theory of senescence in tumorigenesis and aging.
|
79 |
Elucidating the Molecular Mechanism of CYLD-Mediated Necrosis: A DissertationMoquin, David M. 13 May 2013 (has links)
TNFα-induced programmed necrosis is a caspase-independent cell death program that is contingent upon the formation of a multiprotein complex termed the necrosome. The association of two of the components of the necrosome, receptor interacting protein 1 (RIP1) and RIP3, is a critical and signature molecular event during necrosis. Within this complex, both RIP1 and RIP3 are phosphorylated which are consequential for transmission of the pro-necrotic signal. Namely, it has been demonstrated that RIP3 phosphorylation is required for binding to downstream substrates. Nevertheless, the regulatory mechanisms governing necrosome activation remain unclear. Since necrosis is implicated in a variety of different diseases, understanding the biochemical signaling pathway can potentially yield future drug targets. I was interested in identifying other regulators of necrosis in hope of gaining a better understanding of the necrosis signaling pathway and regulators of the necrosome. To address this, I screened a cancer gene siRNA library in a cell line sensitive to necrosis. From this, I independently identified CYLD as a positive regulator of necrosis. Previous studies suggest that deubiquitination of RIP1 in the TNF receptor (TNFR)-1 signaling complex is a prerequisite for transition of RIP1 into the cytosol and assembly of the RIP1-RIP3 necrosome. The deubiquitinase cylindromatosis (CYLD) is presumed to promote programmed necrosis by facilitating RIP1 deubiquitination in this membrane receptor complex. Surprisingly, I found that TNFα could induce RIP1-dependent necrosis in CYLD-/- cells. I show that CYLD does not regulate RIP1 ubiquitination at the receptor complex. Strikingly, assembly of the RIP1-RIP3 necrosome was delayed, but not abolished in the absence of CYLD. In addition to the TNFR-1 complex, I found that RIP1 within the necrosome was also ubiquitinated. In the absence of CYLD, RIP1 ubiquitination in the NP-40 insoluble necrosome was greatly increased. Increased RIP1 ubiquitination correlated with impaired RIP1 and RIP3 phosphorylation, a signature of kinase activation. My results show that CYLD regulates RIP1 ubiquitination in the NP-40 insoluble necrosome, but not in the TNFR-1 signaling complex. Contrary to the current model, CYLD is not essential for necrosome assembly. Rather, it facilitates RIP1 and RIP3 activation within the necrosome and the corollary is enhancement of necrosome functionality and subsequent necrosis. My results therefore indicate that CYLD exerts its pro-necrotic function in the NP-40 insoluble necrosome, and illuminates the mechanism of necrosome activation.
|
80 |
Epigenetic Regulation of Epidermal Development and Keratinocyte DifferentiationBotchkarev, Vladimir A. 07 1900 (has links)
No
|
Page generated in 0.1145 seconds