Spelling suggestions: "subject:"tumor suppressor proteins"" "subject:"humor suppressor proteins""
81 |
p63 and epithelial homeostasis studies of p63 under normal, hyper-proliferative and malignant conditions /Gu, Xiaolian, January 2010 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2010.
|
82 |
Functional Analysis of Ing1 and Ing4 in Cell Growth and Tumorigenesis: a DissertationColes, Andrew H. 02 May 2008 (has links)
The five member Inhibitor of Growth (ING) gene family has been proposed to participate in the regulation of cell growth, DNA repair, inflammation, chromatin remodeling, and tumor suppression. All ING proteins contain a PHD motif implicated in binding to methylated histones and are components of large chromatin remodeling complexes containing histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes, suggesting a role for ING proteins in regulating gene transcription. Additionally, forced overexpression studies performed in vitro have indicated that several ING proteins can interact with the p53 tumor suppressor protein and/or the NF-кB protein complex. Since these two proteins play well-established roles in numerous biological processes, several models have been proposed in the literature that ING proteins act as key regulators of cell growth and tumor suppression not only through their ability to modify gene transcription but also through their ability to alter p53 and NF-кB activity. However, these models have yet to be substantiated by in vivo experimentation.
Research described in this dissertation utilizes a genetic approach to analyze the functional role of two ING proteins, Ing1b and Ing4, in regulating cell growth, inflammation, and tumorigenesis. Loss of p37Ing1b increased proliferation and DNA damage-induced apoptosis irrespective of p53 status in primary cells and mice. However, all other p53 responses were unperturbed. Additionally, p37Ing1b suppressed the formation of spontaneous follicular B-cell lymphomas in mice. Analysis of B-cells from these mice indicates that p37Ing1b inhibits the proliferation of B cells regardless of p53 status, and loss of p53 greatly accelerates the rate of B-cell lymphomagenesis in p37Ing1b-null mice, with double null mice presenting with aggressive diffuse large B-cell lymphomas (DLBL). Marker gene analysis in p37Ing1b/p53 null tumors indicates that these mice develop both non-germinal center and germinal center B cell-like DLBL, and also documents upregulation of NF-кB activity in both B-cells and tumors. Similarly, Ing4 -/- mice did not have altered p53 growth arrest or apoptosis, and did not develop spontaneous tumors. However, Ing4 -/- cells displayed reduced proliferation, and Ing4 -/- mice and macrophages were hypersensitive to treatment with LPS and exhibited decreased IкB gene expression and increased NF-кB activity. These studies demonstrate that Ing proteins can function to suppress spontaneous tumorigenesis and/or inflammatory responses without altering p53 activity, and identifies NF-кB as a biologically-relevant in vivo target of Ing1 and Ing4 signaling.
|
83 |
Analise imunoistoquimica de proteinas relacionadas ao ciclo celular (p53, Ki-67, bcl-2 e c-erbB-2) na transformação maligna do adenoma plenomorfico de glandula salivar / Immunohistochemical analysis of cel-cycle related proteins (p53, Ki-67, bcl-2 and c-erbB-2) in the malignant transformation of pleomorphic adenoma of salivary glandsFreitas, Leandro Luiz Lopes de 03 September 2006 (has links)
Orientador: Albina Messias de Almeida Milani Altemani / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas / Made available in DSpace on 2018-08-06T19:08:01Z (GMT). No. of bitstreams: 1
Freitas_LeandroLuizLopesde_D.pdf: 4064664 bytes, checksum: d04222e584211904229193f280c217a9 (MD5)
Previous issue date: 2006 / Resumo: O adenoma pleomórfico (AP) é a neoplasia mais freqüente das glândulas salivares e o carcinoma ex-adenoma pleomórfico (CXAP) é a sua forma de transformação maligna mais comum. Os trabalhos da literatura com séries exclusivas de CXAP são poucos e englobam, em sua maioria, carcinomas já em estádios avançados. Raros são os estudos realizados exclusivamente com tumores que apresentam os dois componentes (benigno e maligno) e em fases iniciais de malignização. Alterações nos genes p53 e c-erbB-2 parecem ser as principais vias envolvidas nesta transformação. Estas proteínas, além do marcador de proliferação celular Ki-67, podem ser importantes critérios no diagnóstico do CXAP, especialmente em sua fase precoce. O objetivo deste trabalho foi avaliar retrospectivamente a expressão imunoistoquímica de marcadores celulares (p53, c-erbB-2, Ki-67 e bcl-2, uma proteína antiapoptótica) em CXAP em diferentes fases de malignização (4 intracapsulares, 4 minimamente invasivos e 7 francamente invasivos), nas áreas benignas e malignas e em AP que não sofreram malignização (17 casos - grupo controle). A parótida foi a glândula mais acometida em ambos os grupos (CXAP 53%, grupo controle 88%), envolvendo mais mulheres que homens. A idade média dos pacientes com CXAP em qualquer fase evolutiva (63,3 anos) foi maior que no grupo controle (35,6 anos). A proteína p53 foi mais expressa nas áreas malignas (em média 35,71% nos CXAP precoces e 8,11% nos CXAP francamente invasivos, versus 12,76% e 4,58% nas áreas benignas, respectivamente) e principalmente em células luminais, enquanto os menores valores foram encontrados no grupo controle (1,71%). Fato semelhante ocorreu com o índice mitótico e a expressão de Ki-67. A expressão de c-erbB-2 foi observada quase que exclusivamente em células malignas com diferenciação luminal. A proteína bcl-2 teve positividade fraca e focal. Concluímos que as proteínas p53 e c-erbB-2 parecem estar envolvidas na transformação maligna do AP, já em fases precoces, sendo critérios mais objetivos do que a simples avaliação morfológica para o diagnóstico dos CXAP intracapsulares / Abstract: Pleomorphic adenoma (PA) is the commonest salivary gland tumor, and carcinoma ex pleomorphic adenoma (CXPA) is its most frequent malignant counterpart. There are few studies centering on CXPA only and most have been performed in frankly invasive carcinomas. Series of CXPA containing both morphological components (adenoma and carcinoma) at an early stage of carcinomatous transformation are extremely rare. p53 and c-erbB-2 appear to be the most important genes involved in this malignant change. These proteins, and the proliferative index marker Ki-67, could be valuable criteria for diagnosis of CXPA, specially at an early stage. The aim of this study was to assess retrospectively the expression of cell markers (p53, c-erbB-2, Ki-67 and bcl-2, an antiapoptotic protein) in CXPA in different phases of malignant progression (4 intracapsular, 4 minimally invasive and 7 frankly invasive), in benign and malignant areas and in PA without malignant transformation (17 cases - control group). The parotid was the most frequently involved gland in both groups (CXPA: 53%, control group: 88%), and women were more affected than men. The average age in the CXPA group (63.3 years) at any stage was higher than in the control group (35.6 years). p53 expression was highest in malignant areas (mean 35.71% in early CXPA and 8.11% in frankly invasive CXPA, versus 12.76% and 4.58% in benign areas, respectively) and mainly in luminal cells, while the lowest values (1.71%) occurred in the control group. Similar findings were obtained with the mitotic index and Ki-67 expression. c-erbB-2 positivity was observed almost exclusively in malignant cells of the luminal type. bcl-2 expression was weak and focal. In conclusion, both p53 and c-erbB-2 proteins appear to be involved in malignization of PA since an early stage, thus providing criteria more objetive than simple morphological evaluation for diagnosis of intracapsular CXPA / Doutorado / Anatomia Patologica / Doutor em Ciências Médicas
|
84 |
Autophagy-Independent Role for Beclin 1 in the Regulation of Growth Factor Receptor Signaling: A DissertationRohatgi, Rasika 15 January 2015 (has links)
Beclin 1 is a haplo-insufficient tumor suppressor that is decreased in many human tumors. The function of Beclin 1 in cancer has been attributed primarily to its role in the degradative process of autophagy. However, the role of autophagy itself in tumorigenesis is context-dependent and can be both preventive and promoting. Due to its dual function in cancer a better understanding of this process is necessary to develop potential novel cancer therapies. To gain insight into the role of autophagy in breast carcinoma, I analyzed the autophagydependency of different subtypes of breast cancer. My results implicate that triple-negative breast carcinoma cells are more dependent on autophagy than luminal breast carcinoma cells. Chemical inhibition of autophagy decreased the tumorigenicity of triple-negative breast carcinoma cells with regard to proliferation and anchorage-independent growth. However, RNAi-mediated suppression of two autophagy genes, ATG5 and Beclin 1, revealed different outcomes. While suppression of ATG5 decreased glycolysis, Beclin 1 depletion did not affect the glycolytic rates. These results suggest autophagy-independent pro-tumorigenic effects of loss of Beclin 1 in cancer.
Beclin 1 is a core component of the Vps34/Class III PI3K (PI3KC3) and Vps15/p150 complex that regulates multiple membrane trafficking events. I describe a novel mechanism of action for Beclin 1 in breast cancer involving its control of growth factor receptor signaling. I identify a specific stage of early endosome maturation that is regulated by Beclin 1, the transition of APPL1- containing phosphatidyIinositol 3-phosphate-negative (PI3P-) endosomes to PI3P+ endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P-/APPL+ signaling competent compartment. As a result, suppression of BECN1 sustains growth factor stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, Beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Taken together my data identify a novel role for Beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of Beclin 1 expression would enhance breast cancer progression independent of its impact on autophagy.
|
85 |
Validation-based insertional mutagenesis (VBIM) technology identifies adenomatous polypossis coli (APC) like protein (ALP) as a novel negative regulator of NF-κBMundade, Rasika S. 01 1900 (has links)
Colorectal cancer (CRC) is the third leading cause of cancer related deaths in the
United States. The nuclear factor κB (NF-κB) is an important family of
transcription factors whose aberrant activation has been found in many types of
cancer, including CRC. Therefore, understanding the regulation of NF-κB is of
ultimate importance for cancer therapy. Using a novel validation-based
insertional mutagenesis (VBIM) strategy, our lab has identified the novel
adenomatous polyposis coli (APC) like protein (ALP) gene as a negative
regulator of NF-κB. Preliminary studies from our lab demonstrated that
overexpression of ALP led to decreased NF-κB activity by κB reporter assay and
electrophoresis mobility gel shift assay (EMSA). The current project aims to
further evaluate the role of ALP in the regulation of NF-κB signaling in CRC cells.
We found that overexpression of ALP in human CRC HT29 cells greatly reduced
both the number and the size of colonies that were formed in a soft agar assay.
ALP overexpression also decreased the cell growth rate and cell migration ability,
while shRNA mediated knockdown of ALP showed opposite effects, confirming
that ALP is a tumor suppressor in CRC HT29 cells. Overexpression of ALP led to
decreased NF-κB activity by κB reporter assay and condition media assay in
CRC HT29 cells. Furthermore, immunohistochemical analysis with human colon vii
tissues revealed that there is a gradual loss of ALP protein with tumor
progression. We also found that ALP predominantly localizes in the cytoplasm,
and binds to the p65 subunit of NF-κB, and might be functioning downstream of
IκB kinase (IKK). In summary, in this study, we provide evidence regarding the
tumor suppressor role of ALP in CRC by functioning as novel negative regulator
of NF-κB. This discovery could lead to the establishment of ALP as a potential
biomarker and therapeutic target in CRC.
|
86 |
Phospho-regulation and metastatic potential of Murine Double Minute 2Batuello, Christopher N. 21 December 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Murine double minute (Mdm2) is a highly modified and multi-faceted protein that is overexpressed in numerous human malignancies. It engages in many cellular activities and is essential for development since deletion of mdm2 is lethal in early stages of embryonic development. The most studied function of Mdm2 is as a negative regulator of the tumor suppressor protein p53. Mdm2 achieves this regulation by binding to p53 and inhibiting p53 transcriptional activity. Mdm2 also functions as an E3 ubiquitin ligase that signals p53 for destruction by the proteasome. Interestingly recent evidence has shown that Mdm2 can also function as an E3 neddylating enzyme that can conjugate the ubiquitin-like molecule, nedd8, to p53. This modification results in inhibition of p53 activity, while maintaining p53 protein levels. While the signaling events that regulate Mdm2 E3 ubiquitin ligase activity have been extensively studied, what activates the neddylating activity of Mdm2 has remained elusive. My investigations have centered on understanding whether tyrosine kinase signaling could activate the neddylating activity of Mdm2. I have shown that c-Src, a non-receptor protein tyrosine kinase that is involved in a variety of cellular processes, phosphorylates Mdm2 on tyrosines 281 and 302. This phosphorylation event increases the half-life and neddylating activity of Mdm2 resulting in a neddylation dependent reduction of p53 transcriptional activity. Mdm2 also has many p53-independent cellular functions that are beginning to be linked to its role as an oncogene. There is an emerging role for Mdm2 in tumor metastasis. Metastasis is a process involving tumor cells migrating from a primary site to a distal site and is a major cause of morbidity and mortality in cancer patients. To date, the involvement of Mdm2 in breast cancer metastasis has only been correlative, with no in vivo model to definitively define a role for Mdm2. Here I have shown in vivo that Mdm2 enhances breast to lung metastasis through the up regulation of multiple angiogenic factors, including HIF-1 alpha and VEGF. Taken together my data provide novel insights into important p53-dependent and independent functions of Mdm2 that represent potential new avenues for therapeutic intervention.
|
87 |
The tumor suppressing roles of tissue structure in cervical cancer developmentNguyen, Hoa Bich 07 October 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Cervical cancer is caused by the persistent infection of human papilloma virus (HPV) in the cervix epithelium. Although effective preventative care is available, the widespread nature of infection and the variety of HPV strains unprotected by HPV vaccines necessitate a better understanding of the disease for development of new therapies. A major tumor suppressing mechanism is the inhibition of cell division by tissue structure; however, the underlining molecular circuitry for this regulation remains unclear. Recently, the Yap transcriptional co-activator has emerged as a key growth promoter that mediates contact growth arrest and limits organ size. Thus, we aimed to uncover upstream signals that connect tissue organization to Yap regulation in the inhibition of cervical cancer. Two events that disrupt tissue structure were examined including the loss of the tumor suppressor LKB1 and the expression of the viral oncogene HPV16-E6. We identified that Yap mediates cell growth regulation downstream of both LKB1 and E6. Restoration of LKB1 expression in HeLa cervical cancer cells, which lack this tumor suppressor, or shRNA knockdown of LKB1 in NTERT immortalized normal human dermal keratinocytes, demonstrated that LKB1 promotes Yap phosphorylation, nuclear exclusion, and proteasomal degradation. The ability of phosphorylation-defective Yap mutants to rescue LKB1 phenotypes, such as reduced cell proliferation and cell size, suggest that Yap inhibition contributes to LKB1 tumor suppressor function(s). Interestingly, LKB1’s suppression of Yap activity required neither the canonical Yap kinases, Lats1/2, nor metabolic downstream targets of LKB1, AMPK and mTORC1. Instead, the scaffolding protein NF2 was required for LKB1 to induce a specific actin cytoskeleton structure that associates with Yap suppression. Meanwhile, HPV16-E6 promoted Yap activation in all stages of keratinocyte differentiation. E6 activated the Rap1 small GTPase, which in turn promoted Yap activity. Since Rap1 does not mediate differentiation inhibition caused by E6, E6 may play a role in promoting cell growth through Rap1-Yap activation rather than preventing growth arrest through the disruption of differentiation. Altogether, the LKB1-NF2-Yap and E6-Rap1-Yap pathways represent two examples of a novel phenomenon, whereby the structure of a cell directly influences its gene expression and proliferation.
|
88 |
The oncogenic properties of Amot80 in mammary epitheliaRanahan, William P. 12 March 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / While breast cancer is the second most commonly diagnosed cancer worldwide, its causes and natural history are not well defined. The female mammary organ is unique in that it does not reach full maturity until the lactation cycle following pregnancy. This cycle entails extensive growth and reorganization of the primitive epithelial ductal network. Following lactation, these same epithelial cells undergo an equally extensive program of apoptosis and involution. The mammary gland's sensitivity to pro-growth and pro-apoptotic signals may partly explain its proclivity to develop cancers. For epithelial cells to become transformed they must lose intracellular organization known as polarity as differentiated epithelial tissues are refractory to aberrant growth. One essential component of epithelial to mesenchymal transition is the intrinsic capacity of cells to repurpose polarity constituents to promote growth. Recently, a novel mechanism of organ size control has been shown to repurpose the apical junctional associated protein Yap into the nucleus where it functions as a transcriptional coactivator promoting growth and dedifferentiation. The focus of my work has been on a family of adaptor proteins termed Amots that have been shown to scaffold Yap and inhibit growth signaling. Specifically, I have shown that the 80KDa form of Amot, termed Amot80, acts as a dominant negative to the other Amot proteins to promote cell growth while reducing cell differentiation. Amot80 was found to promote the prolonged activation of MAPK signaling. Further, Amot80 expression was also found to enhance the transcriptional activity of Yap. This effect likely underlies the ability of Amot80 to drive disorganized overgrowth of MCF10A cells grown in Matrigel̈™. Overall, these data suggest a mechanism whereby the balance of Amot proteins controls the equilibrium between growth and differentiation within mammary epithelial tissues.
|
89 |
Enhanced DNA binding capacity on up-regulated epidermal wild-type p53 in vitiligo by H2O2-mediated oxidation: a possible repair mechanism for DNA damageSalem, Mohamed M.A., Shalbaf, Mohammad, Gibbons, Nick C., Chavan, Bhavan, Thornton, M. Julie, Schallreuter, Karin U. January 2009 (has links)
No / Vitiligo is characterized by a patchy loss of inherited skin color affecting approximately 0.5% of individuals of all races. Despite the absence of the protecting pigment and the overwhelming evidence for hydrogen peroxide (H(2)O(2))-induced oxidative stress in the entire epidermis of these patients, there is neither increased photodamage/skin aging nor a higher incidence for sun-induced nonmelanoma skin cancer. Here we demonstrate for the first time increased DNA damage via 8-oxoguanine in the skin and plasma in association with epidermal up-regulated phosphorylated/acetylated p53 and high levels of the p53 antagonist p76(MDM2). Short-patch base-excision repair via hOgg1, APE1, and polymerasebeta DNA repair is up-regulated. Overexpression of Bcl-2 and low caspase 3 and cytochrome c levels argue against increased apoptosis in this disease. Moreover, we show the presence of high epidermal peroxynitrite (ONOO(-)) levels via nitrotyrosine together with high nitrated p53 levels. We demonstrate by EMSA that nitration of p53 by ONOO(-) (300 x 10(-6) M) abrogates DNA binding, while H(2)O(2)-oxidized p53 (10(-3) M) enhances DNA binding capacity and prevents ONOO(-)-induced abrogation of DNA binding. Taken together, we add a novel reactive oxygen species to the list of oxidative stress inducers in vitiligo. Moreover, we propose up-regulated wild-type p53 together with p76(MDM2) as major players in the control of DNA damage/repair and prevention of photodamage and nonmelanoma skin cancer in vitiligo.
|
Page generated in 0.0697 seconds