• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 9
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Phosphorylation of the retinoblastoma protein, pRB, by CDK4-cyclin D1

Zarkowska, Tamara Anna January 1999 (has links)
No description available.
12

The molecular genetics of adenocarcinoma of the oesophagus and gastric cardia

Gleeson, Catherine M. January 1996 (has links)
No description available.
13

BRCA1 mediated G2/M cell cycle arrest in response to taxol

Quinn, Jennifer E. January 2000 (has links)
No description available.
14

Targeting APC loss using synthetic lethality in colorectal cancer

Shailes, Hannah January 2018 (has links)
Mutations in the tumour suppressor gene Adenomatous polyposis coli (APC) are found in 80 % of sporadic colorectal cancer (CRC) tumours and are also responsible for the inherited form of CRC, Familial adenomatous polyposis (FAP). In order to identify novel therapeutic targets for the treatment of APC mutated CRC, we have generated an in vitro model of APC mutant CRC using CRISPR-cas9 gene editing. Using the APC wildtype colorectal carcinoma cell line RKO, we targeted the cells with guide RNA (gRNA) targeting exon 2 or exon 15 (encodes 80 % of APC) of the APC gene. We generated isogenic cell lines which differed in the expression of APC, the controls were APC wildtype and the APC mutant (APC Lys736fs) cell lines expressed a truncated ~80 kDa APC protein. We used these cell lines to perform an siRNA screen against 720 kinases and kinase-related genes. We selected seven genes to investigate further, unfortunately none of the potential hits validated. Additionally, we performed an FDA-approved compound screen targeting over 1000 compounds. From this, we identified a group of HMG-CoA reductase (HMGCR) inhibitors known as statins, which selectively cause a greater loss in cell viability in the APC mutated cell lines, compared to the APC wildtype cells. Mechanistically, our data suggests this synthetic lethal relationship is due to a greater decrease in the anti-apoptotic protein survivin. We propose this is due to statins altering the localisation of Rac1, reducing Pak1 activation and reducing the level of Wnt signalling. This results in the reduction of the Wnt target gene survivin. We have successfully identified an FDA-approved family of compounds, which show synthetic lethality with the APC mutation in our in vitro model.
15

Small Intestinal Neuroendocrine Tumours : Genetic and Epigenetic Studies and Novel Serum Biomarkers

Edfeldt, Katarina January 2014 (has links)
Small intestinal neuroendocrine tumours (SI-NETs) are rare, hormone producing and proliferate slowly. Patients usually display metastases at time of diagnosis, the tumours are difficult to cure, and the disease course is unpredictable. The gene expression pattern was investigated in paper I, with emphasis on aggressive disease and tumour progression. Expression microarrays were performed on 42 tumours. Unsupervised hierarchal clustering revealed three clusters that were correlated to clinical features, and expression changes from primary tumour to metastasis. Eight novel genes, ACTG2, GREM2, REG3A, TUSC2, RUNX1, TGFBR2, TPH1 and CDH6 may be of importance for tumour progression. In paper II, expression of ACTG2 was detected in a fraction of SI-NETs, but not in normal enterochromaffin cells. Inhibition of histone methyltransferase and transfection of miR-145 induced expression and no effect was seen after DNA methylation or selective EZH2 inhibition in vitro. miR-145 expression was reduced in metastases compared to primary tumours. Overexpression of ACTG2 inhibited cell growth, and inducing ACTG2 may have therapeutic effects. TCEB3C (Elongin A3) is located on chromosome 18 and is imprinted in some tissues. In paper III a reduced protein expression was detected. The gene was epigenetically repressed by both DNA and histone methylation in a tumour tissue specific context. The expression was also induced in primary cell cultures after DNA demethylation and pyrosequencing revealed promoter region hypermethylation. Overexpression of TCEB3C inhibited cell growth by 50%, suggesting TCEB3C to be a tumour suppressor gene. In paper IV, 69 biomarkers were analysed in blood serum using multiplex proximity ligation assay. Nineteen markers displayed different levels between patients and controls. In an extended cohort, ELISA analysis showed elevated serum levels of Mindin, DcR3 and TFF3 in patients and protein expression in tumour cells. High levels of DcR3 and TFF3 were associated with poor survival, and DcR3 may be a marker for liver metastases. Mindin, DcR3, and TFF3 are potential novel diagnostic biomarkers for SI-NETs.
16

Role of Bone Morphogenetic Protein 3 (BMP3) in Colorectal Carcinogenesis

Ms Kim Hong Loh Unknown Date (has links)
No description available.
17

Computational analysis of multilevel omics data for the elucidation of molecular mechanisms of cancer

Fatai, Azeez Ayomide January 2015 (has links)
Philosophiae Doctor - PhD / Cancer is a group of diseases that arises from irreversible genomic and epigenomic alterations that result in unrestrained proliferation of abnormal cells. Detailed understanding of the molecular mechanisms underlying a cancer would aid the identification of most, if not all, genes responsible for its progression and the development of molecularly targeted chemotherapy. The challenge of recurrence after treatment shows that our understanding of cancer mechanisms is still poor. As a contribution to overcoming this challenge, we provide an integrative multi-omic analysis on glioblastoma multiforme (GBM) for which large data sets on di erent classes of genomic and epigenomic alterations have been made available in the Cancer Genome Atlas data portal. The rst part of this study involves protein network analysis for the elucidation of GBM tumourigenic molecular mechanisms, identification of driver genes, prioritization of genes in chromosomal regions with copy number alteration, and co-expression and transcriptional analysis. Functional modules were obtained by edge-betweenness clustering of a protein network constructed from genes with predicted functional impact mutations and differentially expressed genes. Pathway enrichment analysis was performed on each module to identify statistical overrepresentation of signaling pathways. Known and novel candidate cancer driver genes were identi ed in the modules, and functionally relevant genes in chromosomal regions altered by homologous deletion or high-level amplication were prioritized with the protein network. Co-expressed modules enriched in cancer biological processes and transcription factor targets were identified using network genes that demonstrated high expression variance. Our findings show that GBM's molecular mechanisms are much more complex than those reported in previous studies. We next identified differentially expressed miRNAs for which target genes associated with the protein network were also differentially expressed. MiRNAs and target genes were prioritized based on the number of targeted genes and targeting miRNAs, respectively. MiRNAs that correlated with time to progression were selected by an elastic net-penalized Cox regression model for survival analysis. These miRNA were combined into a signature that independently predicted adjuvant therapy-linked progression-free survival in GBM and its subtypes and overall survival in GBM. The results show that miRNAs play significant roles in GBM progression and patients' survival finally, a prognostic mRNA signature that independently predicted progression-free and overall survival was identified. Pathway enrichment analysis was carried on genes with high expression variance across a cohort to identify those in chemoradioresistance associated pathways. A support vector machine-based method was then used to identify a set of genes that discriminated between rapidly- and slowly-progressing GBM patients, with minimal 5 % cross-validation error rate. The prognostic value of the gene set was demonstrated by its ability to predict adjuvant therapy-linked progression-free and overall survival in GBM and its subtypes and was validated in an independent data set. We have identified a set of genes involved in tumourigenic mechanisms that could potentially be exploited as targets in drug development for the treatment of primary and recurrent GBM. Furthermore, given their demonstrated accuracy in this study, the identified miRNA and mRNA signatures have strong potential to be combined and developed into a robust clinical test for predicting prognosis and treatment response.
18

Molecular Characterization Reveals Novel Genes Implicated in Aetiology and Progression of Osteosarcoma

Pasic, Ivan 12 December 2013 (has links)
Osteosarcoma is the most common bone malignancy in children and adolescents with poorly understood aetiology. Recently, disease susceptibility and aetiology in several cancers have been associated with genomic copy-number (CN) change. We therefore studied the contribution of CN change in osteosarcoma. We report that individuals with osteosarcoma have increased germline structural variation compared to controls. These CN variants (CNVs) preferentially localize to genes implicated in control of osteoblast differentiation, bone mineralization and ossification. We propose that germline CNVs contribute to osteosarcoma susceptibility through deregulation of developmental processes controlled by genes contained within CNVs. Further supporting the notion that germline CNVs in individuals with osteosarcoma are pathogenic, we demonstrate that CNVs are associated with poor patient survival. Finally, we characterize two germline CNVs, at chromosome 1q43 and 2p11.2, which are overrepresented in osteosarcoma patients and propose that they contribute to osteosarcoma susceptibility through effect on neighbouring genes, which could be involved in control of microtubule dynamics and tumour suppression. We further characterize two regions in the tumour genome of osteosarcoma patients that harbour recurrent CN alterations (CNAs). These include deletions at chromosome 3q13.31 and vi ii amplifications at chromosome 7p14.1, which are the most altered regions in osteosarcoma and contest the view that CNAs in osteosarcoma are non-recurrent. Both chromosome 3q13.31 and 7p14.1 CNAs involve genes implicated in carcinogenesis, including LASMP at 3q13.31 and TARP at 7p14.1, while 3q13.31 CNAs also involve two non-coding RNAs. We further show that expression of 3q13.31 genes correlates with the presence of 3q13.31 CNAs. We report that chromosome 3q13.31 and 7p14.1 CNAs are also common in other cancers, identifying these loci as candidates with a global role in carcinogenesis. Supporting the notion that 3q13.31 deletions play a role in osteosarcomagenesis, we find that depletion of 3q13.31 genes promotes proliferation of osteoblasts by regulation of apoptotic and cell-cycle transcripts and also VEGF receptor 1 and that genetic deletions of 3q13.31 are associated with poor survival of osteosarcoma patients. In summary, our study implicates germline and somatic CN changes in osteosarcoma and represents a model approach for elucidation of elements contributing to disease susceptibility and aetiology in human cancer.
19

Molecular Characterization Reveals Novel Genes Implicated in Aetiology and Progression of Osteosarcoma

Pasic, Ivan 12 December 2013 (has links)
Osteosarcoma is the most common bone malignancy in children and adolescents with poorly understood aetiology. Recently, disease susceptibility and aetiology in several cancers have been associated with genomic copy-number (CN) change. We therefore studied the contribution of CN change in osteosarcoma. We report that individuals with osteosarcoma have increased germline structural variation compared to controls. These CN variants (CNVs) preferentially localize to genes implicated in control of osteoblast differentiation, bone mineralization and ossification. We propose that germline CNVs contribute to osteosarcoma susceptibility through deregulation of developmental processes controlled by genes contained within CNVs. Further supporting the notion that germline CNVs in individuals with osteosarcoma are pathogenic, we demonstrate that CNVs are associated with poor patient survival. Finally, we characterize two germline CNVs, at chromosome 1q43 and 2p11.2, which are overrepresented in osteosarcoma patients and propose that they contribute to osteosarcoma susceptibility through effect on neighbouring genes, which could be involved in control of microtubule dynamics and tumour suppression. We further characterize two regions in the tumour genome of osteosarcoma patients that harbour recurrent CN alterations (CNAs). These include deletions at chromosome 3q13.31 and vi ii amplifications at chromosome 7p14.1, which are the most altered regions in osteosarcoma and contest the view that CNAs in osteosarcoma are non-recurrent. Both chromosome 3q13.31 and 7p14.1 CNAs involve genes implicated in carcinogenesis, including LASMP at 3q13.31 and TARP at 7p14.1, while 3q13.31 CNAs also involve two non-coding RNAs. We further show that expression of 3q13.31 genes correlates with the presence of 3q13.31 CNAs. We report that chromosome 3q13.31 and 7p14.1 CNAs are also common in other cancers, identifying these loci as candidates with a global role in carcinogenesis. Supporting the notion that 3q13.31 deletions play a role in osteosarcomagenesis, we find that depletion of 3q13.31 genes promotes proliferation of osteoblasts by regulation of apoptotic and cell-cycle transcripts and also VEGF receptor 1 and that genetic deletions of 3q13.31 are associated with poor survival of osteosarcoma patients. In summary, our study implicates germline and somatic CN changes in osteosarcoma and represents a model approach for elucidation of elements contributing to disease susceptibility and aetiology in human cancer.
20

Étude des fonctions biologiques et oncosuppressives du gène de prédisposition aux Néoplasies Endocriniennes Multiples de type 1 dans les tissus hormono-dépendants chez la souris / Study of the biological and oncosuppressive role of the gene predisposing to multiple endocrine neoplasia type 1 in hormone-dependent tissues in mice

Seigne, Christelle 08 December 2009 (has links)
Les mutations du gène MEN1 prédisposent au syndrome des Néoplasies Endocriniennes Multiples de type 1 (NEM1), caractérisé par des tumeurs endocrines multiples. Les souris hétérozygotes pour Men1 développent des tumeurs similaires, ainsi que des cancers de la prostate et des glandes mammaires, avec une incidence faible. J’ai pu montrer que l’expression de la protéine menin, codée par ce gène, est totalement inactivée dans les carcinomes prostatiques développés chez ces souris et est associée à une dérégulation de l’expression du récepteur aux androgènes et une inactivation de l’inhibiteur des CDK p27, un gène cible connu de menin. Des souris WapCre-Men1 F/F, où le gène Men1 est invalidé dans les cellules mammaires, développent des néoplasies intraépithéliales mammaires (MIN) avec une forte incidence à partir de 9 mois. Une fuite d’expression du transgène WapCre dans l’hypophyse entraîne en plus le développement de prolactinomes chez ces souris, les conduisant à une mort prématurée. Par diverses analyses, j’ai pu déterminer que l’augmentation de l’incidence de ces lésions ne pouvait pas être seulement expliquée par l’influence des prolactinomes. De manière intéressante, j’ai pu mettre en évidence une nette diminution du marquage membranaire de beta-caténine, un partenaire connu de menin, ainsi que de E-cadhérine dans les lésions MIN, suggérant une altération de la cohésion cellulaire en absence de menin. L’ensemble des données obtenues pendant ma thèse indiquent un rôle potentiel de l’invalidation du gène Men1 dans le développement de carcinomes prostatiques et de néoplasies mammaires chez la souris / Mutations of the MEN1 gene predispose to multiple endocrine neoplasia type 1 (MEN1) syndrome, characterized by the occurrence of multiple endocrine tumours. Heterozygous Men1 mutant mice not only recapitulate MEN1 pathology, but also display prostatic and mammary carcinomas with a low incidence. I showed that the expression of menin, coded by the Men1 gene, was completely inactivated in the prostatic carcinomas developed in these mice. Deregulated expression of androgen receptor and the inactivation of p27 CDK inhibitor, a menin target gene, were also found in these lesions. In addition, my data demonstrated that mammary-specific disruption of the Men1 gene in mice led to high incidence of mammary intraepithelial neoplasia (MIN) from 9 months of age in the mutant mice. An unexpected leakage activity of the WapCre transgene in pituitary resulted in the development of prolactinomas and premature death in the mutant mice. Several analyses provided evidence showing that the increased incidence of MIN lesions could not be simply explained by the influence of prolactinomas. Interestingly, we observed a strong reduction of beta-catenin, a known menin partner, and E-cadherin membrane expression in these lesions, suggesting an alteration of cellular adhesion in the absence of menin. On the whole, these data indicate a potential implication of Men1 disruption in the development of prostate carcinomas and mammary intraepithelial neoplasia in mice

Page generated in 0.0757 seconds