• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Architecture of Tunneling Nanotubes : a Structural Approach / Architecture des tunneling nanotubes : une approche structurelle

Cordero Cervantes, Diego 03 December 2019 (has links)
On a longtemps pensé que la communication intercellulaire était essentiellement régie par les signalisations juxta-, endo- et paracrine, les gap junctions et, plus récemment, les exosomes. Cependant, les travaux de plusieurs groupes dont le nôtre ont révélé que les Tunneling Nanotubes (TNT), des protrusions membranaires riches en actine qui relient le cytoplasme de cellules distantes et permettent le transport intercellulaire dynamique de leur contenu biologique, fournissent également l'infrastructure et les machines pour une communication efficace entre cellules. Malgré des progrès significatifs, la caractérisation de ces nouveaux organites a été limitée par le manque d'informations moléculaires et structurelles. Combler ces lacunes à l'aide d'une série d'outils de pointe et d'approches novatrices est devenu l'objectif principal de ma thèse. Plus précisément, j'ai exploré le rôle des complexes régulateurs de l’actine dans la formation des TNT reliant les cellules neuronales. Mes analyses montrent que les voies moléculaires connues pour être impliquées dans la formation d'autres protrusions membranaires régulent différemment la génération des TNT. En utilisant la microscopie par imagerie en direct, la microscopie électronique cryocorrélative et la tomographie, j'ai également étudié la nano-architecture des TNT neuronaux. Mes découvertes ont démontré que les TNT des cellules neuronales sont composés de plusieurs TNT individuels permettant le passage de vésicules et de mitochondries. En raison des difficultés d'identification des TNT in vivo, mes travaux ont également porté sur la mise en œuvre d'une approche « Connectomic » structurelle pour détecter les TNT dans les tissus sans avoir besoin d'un marqueur spécifique de TNT. Mes résultats indiquent que des structures de type TNT relient les cellules granulaires cérébelleuses migratrices des souris nouveau-nées, ce qui suggère que la communication intercellulaire pendant des événements migratoires dans le cerveau pourrait être médiée par des processus mettant en jeu des TNT. La squelettisation des structures identifiées fournit des informations géométriques qui corroborent les observations faites dans des expériences de couplage de colorants. L'ensemble de mes travaux de thèse fait la lumière sur la formation et la structure des TNT neuronaux in vitro et sur de nouvelles approches pour l'identification des TNT in vivo. / Inter-cellular communication has long been thought to be governed by juxta-, endo-, and paracrine signaling, tight junctions, and more recently, exosomes. However, large efforts from our and other groups revealed that Tunneling Nanotubes (TNTs), actin-rich membranous protrusions that connect the cytoplasm of distant cells and allow the dynamic inter-cellular transport of biological cargo, also provide the infrastructure and machinery for effective cell-to-cell communication. Despite significant progress made to unveil TNT-mediated cell communication, the characterization of these novel organelles has been limited by unanswered questions that hail from the lack of both molecular and structural information. Exploring these gaps in the field using a series of state-of-the-art tools and novel approaches became the main focus of my dissertation. Specifically, I explored the specific role of actin-regulator complexes in the formation of TNTs connecting neuronal cells. My analyses show that molecular pathways known to be involved in the formation of other membranous protrusions behave differently in the generation of TNTs. By employing live imaging microscopy, cryo-correlative electron microscopy and tomography approaches, I also studied the nano- architecture of neuronal TNTs. My findings demonstrated that TNTs of neuronal cells are comprised of multiple individual TNTs capable of transporting vesicles and mitochondria. Owing to the difficulties of identifying TNTs in vivo, my work also focused on the implementation of a structural Connectomic approach to detect TNTs in tissue without the need for a TNT-specific marker. My findings indicate that TNT-like structures connect migratory cerebellar granule cells of neonate mice, suggesting that inter-cellular communication during migratory events in the brain could be mediated by TNT-like processes. Skeletonization of the structures identified provide my findings with geometrical information that can be compared with observations made by corroborative dye-coupling experiments. Taken together, my dissertation work sheds light on the formation and structure of neuronal TNTs in vitro, and novel approaches for the identification of TNTs in vivo.
2

Einfluss von Stressfaktoren auf Tunneling Nanotubes in kultivierten humanen retinalen Pigmentepithelzellen (ARPE-19)

Walter, Cindy 10 December 2015 (has links) (PDF)
Influence of stress factors on tunneling nanotubes in cultivated human retinal pigment epithelial cells (ARPE-19). The eye as one of the most important sense organs of the human body is exposed to visible light radiation and other stress factors every day. Especially the retina (of the eye) is a sensible tissue for oxidative damage (Wu et al., 2006). The retinal pigment epithelium (RPE) is an important layer of the retina, which forms the outer layer and phagocytises the shed disc membranes of the photoreceptor outer segments. Furthermore, the RPE is involved in the maintenance of the visual cycle and regulates the retinal balance (Bok, 1993). To maintain those functions, a steady communication between the RPE-cells and the adjacent neighbour cells is necessary. Tunneling nanotubes (TNTs) build a newly discovered variety of cell communication and thus establish intercellular signal transduction and transport different cell components including pathogens (Rustom et al., 2004; Onfelt et al., 2006; Sherer und Mothes, 2008; Veranic et al., 2008). The formation of TNTs in the neuron-like pheochromocytoma cell line PC12 was first reported by Rustom et al in 2004. In the following years a growing number of cell types containing TNTs were described. For example a lot of TNT-reports were found between immune cells (Onfelt et al., 2004; Sowinski et al., 2008). Chinnery et al. first described TNTs in vivo in 2008. Here they found TNTs between dendritic cells in the cornea of the mouse. An important characteristic of TNTs is that they do not attach to the substratum. They contain F-actin as a characteristic feature of there structure (Rustom et al., 2004). Our study group detected the formation of TNTs between ARPE-19-cells, a human retinal pigment epithelial cell line. They contain F-actin, but no microtubules. Further it was observed an exchange of electrical signals, small molecules and even the transfer of organelles between cells via TNTs (see publication Wittig et al., 2012). It is often described in the literature, that TNTs are very sensitive against stress factors, like prolonged light excitation, mechanical and chemical stress, which then can result in rupture of the TNTs (Rustom et al., 2004; Koyanagi et al., 2005; Gurke et al., 2008a; Pontes et al., 2008; Sowinski et al., 2008; Domhan et al., 2011; Wang und Gerdes, 2012). Up to now it is widely unclear how pathological conditions influences TNTs. There are several studies, which report an induction but also an inhibition of TNT-formation by different factors. The reaction of cell-cell-interactions between RPE cells on stress factors is not jet analysed. So our motivation was, to analyse the influence of different stress factors on the number, the morphology and formation of TNTs. ARPE-19-cells were treated with blue light, with a wavelength of 470 and 405 nm, with 3000 μM glyoxal, with 200 μM H2O2, with medium without serum as well as with cytochalasin-D and latrunculin-B. With the help of differential interference contrast (DIC) microscopy the formed TNTs were counted and the morphology was evaluated. A 24 hours cultivation of untreated ARPE-19 cells resulted in 15 TNTs per 100 cells on average. After excitation of the ARPE-19-cells with blue light 470 and 405 nm the number of TNTs decreased 50 % and 28,5 % accordingly in comparison to untreated cells (100 %). Furthermore, the cell culture, which was treated with glyoxal and H2O2 resulted in a reduction of 17,5 % and 53 % TNTs in comparison to the untreated cell culture. Cells which were cultured with serum free medium had an decreased TNT-number of 56.8 % in comparison with serum containing medium. TNTs of untreated ARPE-19-cells have a diameter from 50 to 300 nm (Wittig et al., 2012). Every TNTs, which were formed under named stress factors had the same diameter like untreated cells. In this study an average TNT length of 23 +/- 16 μm was measured between cells without treatment. This correlated with the TNT-lengths of cells which excitated with blue light 405 and 470 nm with 26 +/- 13 μm and 24 +/- 14 μm. In contrast the TNT-lenghts of cells treated with glyoxal and H2O2 with 16 +/- 11 μm and 15 +/- 13 μm were less and from cells cultured without serum with 34 +/- 20 μm were above the average length of TNTs of untreated cells. TNTs of ARPE-19-cells without treatment and TNTs which were treated with stress factors contained F-actin but no microtubules. Depolymerisation of F-actin, induced by addition of cytochalasin-D or latrunculin-B, led to disappearance of TNTs. This is an evidence for the importance of F-actin as an essential component of TNTs between ARPE-19-cells. Under the influence of blue light excitation the TNTs formed as good as untreated cells after contact of migrating cells. Reason for the reduced TNT-formation under stress factors could be explained by the generation of oxidative stress due to reactive oxygen species (ROS). ROS induced under blue light- or glyoxal-treatment as well as H2O2 could influence cell function by inactivation of cell-mediated proteins or induction of F-actin oxidation with subsequent destruction of the actin-network and inhibition of the actin-polymerisation (Chen, 1993; Ballinger et al., 1999; Thornalley et al., 1999; Valen et al., 1999; Dalle-Donne et al., 2002; Nilsson et al., 2003; Shangari und O'Brien, 2004; Zhu et al., 2005; Knels et al. 2008; Roehlecke et al., 2009). The reduced actin-polymerisation as well as the disruption of the TNTs due to changes at the actin-cytoskeleton and at the membranes could explain the reduced TNT-formation (Valen et al., 1999; Dalle-Donne et al., 2002; Reber et al., 2002; Zhu et al., 2005; Knels et al., 2008). The inhibition of the cell growth under oxidative stress conditions and under nutritional deficiency by serum free medium could lead to a reduced TNT-formation too. In this study we found a reduction of TNT-number between ARPE-19-cells under different stress conditions. It is possible, that TNTs are formed between RPE- and photoreceptor-cells in vivo, where they can exchange useful or recyclable materials between cells (Wang et al., 2011; Wittig et al., 2012). Disruption of TNTs by reactive oxygen species could cause a decreased exchange of informations. It is possible, that the cells, RPE- as well as photoreceptor-cells, die due to a deficiency of nutrients. This could be another reason in the formation of age related macular degeneration, which shows a destruction of RPE-cells and secondary of the photoreceptorcells. / Das Auge ist als eines der wichtigsten Sinnesorgane des Menschen täglich sichtbarer Lichtstrahlung und weiteren Stressfaktoren ausgesetzt. Die Netzhaut des Auges ist besonders empfindlich für oxidative Schäden (Wu et al., 2006). Eine bedeutende Schicht der Netzhaut im Auge stellt das retinale Pigmentepithel (RPE) dar, welches die äußere Schicht der Retina bildet und täglich die abgeworfenen Photorezeptoraußensegmentscheiben phagozytiert. Zudem ist das RPE wesentlich am visuellen Prozess sowie der Aufrechterhaltung des retinalen Gleichgewichts beteiligt (Bok, 1993). Um diese Funktionen zu gewährleisten, ist eine ständige Kommunikation zwischen den RPEZellen sowie zu angrenzenden Nachbarzellen innerhalb der Netzhaut notwendig. So ist über Tunneling Nanotubes (TNTs), als neu entdeckte Kommunikationsform, ein interzellulärer Transport von Signalen und verschiedensten Zellkomponenten, aber auch von Pathogenen, möglich (Rustom et al., 2004; Onfelt et al., 2006; Sherer und Mothes, 2008; Veranic et al., 2008). Erstmals 2004 beschrieben Rustom et al. die Bildung von TNTs zwischen Rattennierenzellen in vitro. In den folgenden Jahren kam es zu einer Vielzahl weiterer TNT-Entdeckungen zwischen verschiedensten Zellen in vitro. So findet man zum Beispiel vermehrt TNTBeschreibungen zwischen Immunzellen (Onfelt et al., 2004; Sowinski et al., 2008). Ein erster Nachweis an TNTs in vivo erfolgte 2008 durch die Arbeitsgruppe Chinnery et al.. Hierbei fand man TNTs zwischen dendritischen Zellen in der Mauscornea. Ein wichtiges Merkmal von TNTs ist, dass sie sich als frei im Medium schwebende interzelluläre Verbindungen darstellen, ohne Kontakt zum Substrat zu haben. TNTs sind im Wesentlichen als stabilisierendes Hauptstrukturmerkmal aus Aktin aufgebaut (Rustom et al., 2004). In unserer Arbeitsgruppe wurde die Bildung von TNTs zwischen ARPE-19-Zellen, einer humanen Pigmentepithelzelllinie, entdeckt. Neben dem strukturellen Aufbau aus Aktin, konnte ein Austausch von elektrischen Signalen sowie molekularen Stoffen und der Transport von Organellen (Mitochondrien) durch TNTs zwischen ARPE-19-Zellen nachgewiesen werden (siehe Publikation Wittig et al., 2012). Wie schon mehrfach in der Literatur beschrieben, reagieren TNTs sehr sensibel auf Stressfaktoren, so zum Beispiel auf längere Lichtreizung, mechanischen und chemischen Stress, was jeweils zur Ruptur der Strukturen führen kann (Rustom et al., 2004; Koyanagi et al., 2005; Gurke et al., 2008; Pontes et al., 2008; Sowinski et al., 2008; Domhan et al., 2011; Wang und Gerdes, 2012). Weitgehend unklar ist bisher der Einfluss von pathologischen Bedingungen auf die TNTs. Es gibt mehrere Studien, in denen durch verschiedenste Faktoren über eine Induktion, aber auch über eine Hemmung der TNT-Bildung berichtet wurde. Die Reaktion von Zell-Zell-Interaktionen zwischen RPE-Zellen auf Stressfaktoren wurde bisher in wissenschaftlichen Arbeiten nicht untersucht. Dies nahmen wir zum Anlass, den Einfluss von unterschiedlichen Stressfaktoren auf die Anzahl von TNTs, ihre Morphologie und Bildung zu untersuchen. Es erfolgte eine Behandlung der ARPE-19-Zellen mit Blaulicht in den Wellenlängen 405 und 470 nm, mit 3000 μM Glyoxal, mit 200 μM H2O2, mit serumfreiem Medium sowie mit Cytochalasin D und Latrunculin B. Die gebildeten TNTs wurden anschließend mit Hilfe der Lichtmikroskopie ausgezählt sowie deren Morphologie beurteilt. So bildeten unbehandelte ARPE-19-Zellen nach 24 Stunden Kultivierung im Durchschnitt 15 TNTs pro 100 Zellen aus. Nach 24stündiger Bestrahlung der ARPE-19-Zellen mit Blaulicht 470 nm und 405 nm fiel die TNT-Anzahl auf 50 % und 28,5 % im Vergleich zu unbehandelten Zellen (100 %). Weiterhin fanden sich in den Glyoxal- und H2O2-behandelten Kulturschalen 17,5 % und 53 % TNTs verglichen mit der unbehandelten Zellkultur. In der serumfreien Kulturschale verringerten sich die TNTs 24 Stunden nach Ausplattierung der Zellen auf 56,8 % im Vergleich zu in Medium mit Serum kultivierten Zellen. TNTs unbehandelter ARPE-19-Zellen besitzen einen Durchmesser von 50 bis 300 nm (Wittig et al., 2012). Alle unter oben genannten Stressfaktoren gebildeten TNTs befanden sich in Hinblick auf ihren Durchmesser im Bereich der TNTs unbehandelter Zellen. Bei TNTs unbehandelter Zellen wurde in dieser Arbeit eine durchschnittliche Länge von 23 +/- 16 μm gemessen. Dies entsprach dem TNT-Längendurchschnitt von mit Blaulicht 405 nm und 470 nm bestrahlter ARPE-19-Zellen mit 26 +/- 13 μm und mit 24 +/- 14 μm. Unter Glyoxal und H2O2 gebildete TNTs lagen im Gegensatz dazu mit 16 +/- 11 μm und 15 +/- 13 μm unterhalb und unter serumfreier Kultivierung mit 34 +/- 20 μm über dem TNTLängendurchschnitt unbehandelter Zellen. Alle TNTs, sowohl unbehandelter als auch mit Stressfaktoren behandelter ARPE-19-Zellen, sind aus Aktin aufgebaut. Jedoch ließ sich kein Tubulin nachweisen. Nach Zugabe von Aktinpolymerisationshemmern waren keine TNTs nachweisbar, was beweist, dass F-Aktin essentieller Bestandteil von TNTs zwischen ARPE-19-Zellen ist. Unter dem Einfluss von Blaulicht 470 und 405 nm bildeten sich die TNTs, wie auch bei unbehandelten Zellen, durch ein Zusammentreffen der Zellen mit anschließendem Auseinandergleiten. Die Ursache für die verminderte Bildung an TNTs unter verschiedenen Stressfaktoren könnte in der Entstehung von oxidativem Stress durch die Ausbildung von reaktiven Sauerstoffspezies (ROS) begründet sein. So können zum Beispiel die unter Blaulicht- und Glyoxalexposition entstehenden ROS sowie H2O2, als eine Hauptform der ROS, die Zellfunktion durch Inaktivierung zellulärer Proteine beeinflussen sowie eine direkte Oxidation an Aktin hervorrufen mit folglicher Aktinnetzwerkzerstörung und Hemmung der Aktinpolymerisation (Chen, 1993; Ballinger et al., 1999; Thornalley et al., 1999; Valen et al., 1999; Dalle-Donne et al., 2002; Nilsson et al., 2003; Shangari und O'Brien, 2004; Zhu et al., 2005; Knels, Worm et al. 2008; Roehlecke et al., 2009). Die verminderte Aktinpolymerisation, aber auch die Zerreißungen der TNTs durch Veränderungen am Aktinzytoskelett sowie an den Membranen könnten zu einer verringerten TNT-Bildung führen (Valen et al., 1999; Dalle-Donne et al., 2002; Reber et al., 2002; Zhu et al., 2005; Knels et al., 2008). Auch eine Hemmung des Zellwachstums unter oxidativen Stressbedingungen sowie unter Nährstoffmangel durch Serumentzug könnte mit einer verminderten TNT-Bildung einhergehen. Wir haben in unserer Untersuchung gezeigt, dass es durch verschiedene Stresseinflüsse zu einer Reduktion der TNTs zwischen ARPE-19-Zellen kommt. Es ist denkbar, dass solche TNTs in vivo zwischen RPE- und Photorezeptorzellen ausgebildet werden, wo sie nützliches oder recycelbares Material zwischen Zellen austauschen (Wang et al., 2011; Wittig et al., 2012). Bei Zerstörung der TNTs durch zum Beispiel oxidative Faktoren könnte es zu einer Verringerung des Informationsaustausches kommen. Es ist möglich, dass durch die Minderversorgung die Zellen absterben, sowohl RPE- als auch Photorezeptorzellen. Dies könnte ein weiterer möglicher Ursachenansatz in der Entstehung der altersabhängigen Makuladegeneration sein, welche als Erkrankungserscheinung den Untergang der RPEZellen und damit sekundär der Photorezeptorzellen aufweist.
3

Einfluss von Stressfaktoren auf Tunneling Nanotubes in kultivierten humanen retinalen Pigmentepithelzellen (ARPE-19)

Walter, Cindy 17 November 2015 (has links)
Influence of stress factors on tunneling nanotubes in cultivated human retinal pigment epithelial cells (ARPE-19). The eye as one of the most important sense organs of the human body is exposed to visible light radiation and other stress factors every day. Especially the retina (of the eye) is a sensible tissue for oxidative damage (Wu et al., 2006). The retinal pigment epithelium (RPE) is an important layer of the retina, which forms the outer layer and phagocytises the shed disc membranes of the photoreceptor outer segments. Furthermore, the RPE is involved in the maintenance of the visual cycle and regulates the retinal balance (Bok, 1993). To maintain those functions, a steady communication between the RPE-cells and the adjacent neighbour cells is necessary. Tunneling nanotubes (TNTs) build a newly discovered variety of cell communication and thus establish intercellular signal transduction and transport different cell components including pathogens (Rustom et al., 2004; Onfelt et al., 2006; Sherer und Mothes, 2008; Veranic et al., 2008). The formation of TNTs in the neuron-like pheochromocytoma cell line PC12 was first reported by Rustom et al in 2004. In the following years a growing number of cell types containing TNTs were described. For example a lot of TNT-reports were found between immune cells (Onfelt et al., 2004; Sowinski et al., 2008). Chinnery et al. first described TNTs in vivo in 2008. Here they found TNTs between dendritic cells in the cornea of the mouse. An important characteristic of TNTs is that they do not attach to the substratum. They contain F-actin as a characteristic feature of there structure (Rustom et al., 2004). Our study group detected the formation of TNTs between ARPE-19-cells, a human retinal pigment epithelial cell line. They contain F-actin, but no microtubules. Further it was observed an exchange of electrical signals, small molecules and even the transfer of organelles between cells via TNTs (see publication Wittig et al., 2012). It is often described in the literature, that TNTs are very sensitive against stress factors, like prolonged light excitation, mechanical and chemical stress, which then can result in rupture of the TNTs (Rustom et al., 2004; Koyanagi et al., 2005; Gurke et al., 2008a; Pontes et al., 2008; Sowinski et al., 2008; Domhan et al., 2011; Wang und Gerdes, 2012). Up to now it is widely unclear how pathological conditions influences TNTs. There are several studies, which report an induction but also an inhibition of TNT-formation by different factors. The reaction of cell-cell-interactions between RPE cells on stress factors is not jet analysed. So our motivation was, to analyse the influence of different stress factors on the number, the morphology and formation of TNTs. ARPE-19-cells were treated with blue light, with a wavelength of 470 and 405 nm, with 3000 μM glyoxal, with 200 μM H2O2, with medium without serum as well as with cytochalasin-D and latrunculin-B. With the help of differential interference contrast (DIC) microscopy the formed TNTs were counted and the morphology was evaluated. A 24 hours cultivation of untreated ARPE-19 cells resulted in 15 TNTs per 100 cells on average. After excitation of the ARPE-19-cells with blue light 470 and 405 nm the number of TNTs decreased 50 % and 28,5 % accordingly in comparison to untreated cells (100 %). Furthermore, the cell culture, which was treated with glyoxal and H2O2 resulted in a reduction of 17,5 % and 53 % TNTs in comparison to the untreated cell culture. Cells which were cultured with serum free medium had an decreased TNT-number of 56.8 % in comparison with serum containing medium. TNTs of untreated ARPE-19-cells have a diameter from 50 to 300 nm (Wittig et al., 2012). Every TNTs, which were formed under named stress factors had the same diameter like untreated cells. In this study an average TNT length of 23 +/- 16 μm was measured between cells without treatment. This correlated with the TNT-lengths of cells which excitated with blue light 405 and 470 nm with 26 +/- 13 μm and 24 +/- 14 μm. In contrast the TNT-lenghts of cells treated with glyoxal and H2O2 with 16 +/- 11 μm and 15 +/- 13 μm were less and from cells cultured without serum with 34 +/- 20 μm were above the average length of TNTs of untreated cells. TNTs of ARPE-19-cells without treatment and TNTs which were treated with stress factors contained F-actin but no microtubules. Depolymerisation of F-actin, induced by addition of cytochalasin-D or latrunculin-B, led to disappearance of TNTs. This is an evidence for the importance of F-actin as an essential component of TNTs between ARPE-19-cells. Under the influence of blue light excitation the TNTs formed as good as untreated cells after contact of migrating cells. Reason for the reduced TNT-formation under stress factors could be explained by the generation of oxidative stress due to reactive oxygen species (ROS). ROS induced under blue light- or glyoxal-treatment as well as H2O2 could influence cell function by inactivation of cell-mediated proteins or induction of F-actin oxidation with subsequent destruction of the actin-network and inhibition of the actin-polymerisation (Chen, 1993; Ballinger et al., 1999; Thornalley et al., 1999; Valen et al., 1999; Dalle-Donne et al., 2002; Nilsson et al., 2003; Shangari und O'Brien, 2004; Zhu et al., 2005; Knels et al. 2008; Roehlecke et al., 2009). The reduced actin-polymerisation as well as the disruption of the TNTs due to changes at the actin-cytoskeleton and at the membranes could explain the reduced TNT-formation (Valen et al., 1999; Dalle-Donne et al., 2002; Reber et al., 2002; Zhu et al., 2005; Knels et al., 2008). The inhibition of the cell growth under oxidative stress conditions and under nutritional deficiency by serum free medium could lead to a reduced TNT-formation too. In this study we found a reduction of TNT-number between ARPE-19-cells under different stress conditions. It is possible, that TNTs are formed between RPE- and photoreceptor-cells in vivo, where they can exchange useful or recyclable materials between cells (Wang et al., 2011; Wittig et al., 2012). Disruption of TNTs by reactive oxygen species could cause a decreased exchange of informations. It is possible, that the cells, RPE- as well as photoreceptor-cells, die due to a deficiency of nutrients. This could be another reason in the formation of age related macular degeneration, which shows a destruction of RPE-cells and secondary of the photoreceptorcells. / Das Auge ist als eines der wichtigsten Sinnesorgane des Menschen täglich sichtbarer Lichtstrahlung und weiteren Stressfaktoren ausgesetzt. Die Netzhaut des Auges ist besonders empfindlich für oxidative Schäden (Wu et al., 2006). Eine bedeutende Schicht der Netzhaut im Auge stellt das retinale Pigmentepithel (RPE) dar, welches die äußere Schicht der Retina bildet und täglich die abgeworfenen Photorezeptoraußensegmentscheiben phagozytiert. Zudem ist das RPE wesentlich am visuellen Prozess sowie der Aufrechterhaltung des retinalen Gleichgewichts beteiligt (Bok, 1993). Um diese Funktionen zu gewährleisten, ist eine ständige Kommunikation zwischen den RPEZellen sowie zu angrenzenden Nachbarzellen innerhalb der Netzhaut notwendig. So ist über Tunneling Nanotubes (TNTs), als neu entdeckte Kommunikationsform, ein interzellulärer Transport von Signalen und verschiedensten Zellkomponenten, aber auch von Pathogenen, möglich (Rustom et al., 2004; Onfelt et al., 2006; Sherer und Mothes, 2008; Veranic et al., 2008). Erstmals 2004 beschrieben Rustom et al. die Bildung von TNTs zwischen Rattennierenzellen in vitro. In den folgenden Jahren kam es zu einer Vielzahl weiterer TNT-Entdeckungen zwischen verschiedensten Zellen in vitro. So findet man zum Beispiel vermehrt TNTBeschreibungen zwischen Immunzellen (Onfelt et al., 2004; Sowinski et al., 2008). Ein erster Nachweis an TNTs in vivo erfolgte 2008 durch die Arbeitsgruppe Chinnery et al.. Hierbei fand man TNTs zwischen dendritischen Zellen in der Mauscornea. Ein wichtiges Merkmal von TNTs ist, dass sie sich als frei im Medium schwebende interzelluläre Verbindungen darstellen, ohne Kontakt zum Substrat zu haben. TNTs sind im Wesentlichen als stabilisierendes Hauptstrukturmerkmal aus Aktin aufgebaut (Rustom et al., 2004). In unserer Arbeitsgruppe wurde die Bildung von TNTs zwischen ARPE-19-Zellen, einer humanen Pigmentepithelzelllinie, entdeckt. Neben dem strukturellen Aufbau aus Aktin, konnte ein Austausch von elektrischen Signalen sowie molekularen Stoffen und der Transport von Organellen (Mitochondrien) durch TNTs zwischen ARPE-19-Zellen nachgewiesen werden (siehe Publikation Wittig et al., 2012). Wie schon mehrfach in der Literatur beschrieben, reagieren TNTs sehr sensibel auf Stressfaktoren, so zum Beispiel auf längere Lichtreizung, mechanischen und chemischen Stress, was jeweils zur Ruptur der Strukturen führen kann (Rustom et al., 2004; Koyanagi et al., 2005; Gurke et al., 2008; Pontes et al., 2008; Sowinski et al., 2008; Domhan et al., 2011; Wang und Gerdes, 2012). Weitgehend unklar ist bisher der Einfluss von pathologischen Bedingungen auf die TNTs. Es gibt mehrere Studien, in denen durch verschiedenste Faktoren über eine Induktion, aber auch über eine Hemmung der TNT-Bildung berichtet wurde. Die Reaktion von Zell-Zell-Interaktionen zwischen RPE-Zellen auf Stressfaktoren wurde bisher in wissenschaftlichen Arbeiten nicht untersucht. Dies nahmen wir zum Anlass, den Einfluss von unterschiedlichen Stressfaktoren auf die Anzahl von TNTs, ihre Morphologie und Bildung zu untersuchen. Es erfolgte eine Behandlung der ARPE-19-Zellen mit Blaulicht in den Wellenlängen 405 und 470 nm, mit 3000 μM Glyoxal, mit 200 μM H2O2, mit serumfreiem Medium sowie mit Cytochalasin D und Latrunculin B. Die gebildeten TNTs wurden anschließend mit Hilfe der Lichtmikroskopie ausgezählt sowie deren Morphologie beurteilt. So bildeten unbehandelte ARPE-19-Zellen nach 24 Stunden Kultivierung im Durchschnitt 15 TNTs pro 100 Zellen aus. Nach 24stündiger Bestrahlung der ARPE-19-Zellen mit Blaulicht 470 nm und 405 nm fiel die TNT-Anzahl auf 50 % und 28,5 % im Vergleich zu unbehandelten Zellen (100 %). Weiterhin fanden sich in den Glyoxal- und H2O2-behandelten Kulturschalen 17,5 % und 53 % TNTs verglichen mit der unbehandelten Zellkultur. In der serumfreien Kulturschale verringerten sich die TNTs 24 Stunden nach Ausplattierung der Zellen auf 56,8 % im Vergleich zu in Medium mit Serum kultivierten Zellen. TNTs unbehandelter ARPE-19-Zellen besitzen einen Durchmesser von 50 bis 300 nm (Wittig et al., 2012). Alle unter oben genannten Stressfaktoren gebildeten TNTs befanden sich in Hinblick auf ihren Durchmesser im Bereich der TNTs unbehandelter Zellen. Bei TNTs unbehandelter Zellen wurde in dieser Arbeit eine durchschnittliche Länge von 23 +/- 16 μm gemessen. Dies entsprach dem TNT-Längendurchschnitt von mit Blaulicht 405 nm und 470 nm bestrahlter ARPE-19-Zellen mit 26 +/- 13 μm und mit 24 +/- 14 μm. Unter Glyoxal und H2O2 gebildete TNTs lagen im Gegensatz dazu mit 16 +/- 11 μm und 15 +/- 13 μm unterhalb und unter serumfreier Kultivierung mit 34 +/- 20 μm über dem TNTLängendurchschnitt unbehandelter Zellen. Alle TNTs, sowohl unbehandelter als auch mit Stressfaktoren behandelter ARPE-19-Zellen, sind aus Aktin aufgebaut. Jedoch ließ sich kein Tubulin nachweisen. Nach Zugabe von Aktinpolymerisationshemmern waren keine TNTs nachweisbar, was beweist, dass F-Aktin essentieller Bestandteil von TNTs zwischen ARPE-19-Zellen ist. Unter dem Einfluss von Blaulicht 470 und 405 nm bildeten sich die TNTs, wie auch bei unbehandelten Zellen, durch ein Zusammentreffen der Zellen mit anschließendem Auseinandergleiten. Die Ursache für die verminderte Bildung an TNTs unter verschiedenen Stressfaktoren könnte in der Entstehung von oxidativem Stress durch die Ausbildung von reaktiven Sauerstoffspezies (ROS) begründet sein. So können zum Beispiel die unter Blaulicht- und Glyoxalexposition entstehenden ROS sowie H2O2, als eine Hauptform der ROS, die Zellfunktion durch Inaktivierung zellulärer Proteine beeinflussen sowie eine direkte Oxidation an Aktin hervorrufen mit folglicher Aktinnetzwerkzerstörung und Hemmung der Aktinpolymerisation (Chen, 1993; Ballinger et al., 1999; Thornalley et al., 1999; Valen et al., 1999; Dalle-Donne et al., 2002; Nilsson et al., 2003; Shangari und O'Brien, 2004; Zhu et al., 2005; Knels, Worm et al. 2008; Roehlecke et al., 2009). Die verminderte Aktinpolymerisation, aber auch die Zerreißungen der TNTs durch Veränderungen am Aktinzytoskelett sowie an den Membranen könnten zu einer verringerten TNT-Bildung führen (Valen et al., 1999; Dalle-Donne et al., 2002; Reber et al., 2002; Zhu et al., 2005; Knels et al., 2008). Auch eine Hemmung des Zellwachstums unter oxidativen Stressbedingungen sowie unter Nährstoffmangel durch Serumentzug könnte mit einer verminderten TNT-Bildung einhergehen. Wir haben in unserer Untersuchung gezeigt, dass es durch verschiedene Stresseinflüsse zu einer Reduktion der TNTs zwischen ARPE-19-Zellen kommt. Es ist denkbar, dass solche TNTs in vivo zwischen RPE- und Photorezeptorzellen ausgebildet werden, wo sie nützliches oder recycelbares Material zwischen Zellen austauschen (Wang et al., 2011; Wittig et al., 2012). Bei Zerstörung der TNTs durch zum Beispiel oxidative Faktoren könnte es zu einer Verringerung des Informationsaustausches kommen. Es ist möglich, dass durch die Minderversorgung die Zellen absterben, sowohl RPE- als auch Photorezeptorzellen. Dies könnte ein weiterer möglicher Ursachenansatz in der Entstehung der altersabhängigen Makuladegeneration sein, welche als Erkrankungserscheinung den Untergang der RPEZellen und damit sekundär der Photorezeptorzellen aufweist.
4

Importance de la communication intercellulaire entre cardiomyocytes adultes et cellules souches mésenchymateuses du tissu adipeux humain en thérapie cellulaire cardiaque post-infarctus / tCell to cell communication between adult cardiomyocytes and mesenchymal stem cells from human adipose tissue to improve cardiac cell therapy

Lesault, Pierre-François 20 December 2012 (has links)
La thérapie cellulaire pour le traitement de l'insuffisance cardiaque post-infarctus semble prometteuse même si le bénéfice fonctionnel observé actuellement en recherche clinique reste souvent limité. Parmi les différent types cellulaires utilisables, les cellules souches mésenchymateuses (MSC) reconnues pour leur capacité d'immunomodulation, de transdifférenciation et de sécrétion paracrine représentent un outil intéressant pour la régénération myocardique.L'objectif de ce travail a été de mieux comprendre les mécanismes mis en place par les MSC pour réparer le myocarde lésé afin de développer ensuite une stratégie visant à optimiser les effets thérapeutiques de la greffe de MSCs dans le cadre expérimental de l'insuffisance cardiaque post-infarctus. Pour cette étude, nous avons réalisé des cocultures entre cardiomyocytes adultes et les MSC dérivées du tissu adipeux, les cellules hMADS (human Multipotent Adipose Derived Stem cells) afin de mimer le microenvironnement cardiaque in vitro. Des travaux antérieurs à ma thèse réalisés au laboratoire avaient montré que la communication intercellulaire entre ces deux types cellulaires grâce à des structures nanotubulaires aboutissait à la reprogrammation du cardiomyocyte vers le stade progéniteur. Durant ma thèse, nous avons ensuite pu montrer in vitro, toujours grâce au système de coculture, que ce meme type de communication hetérologue via des connexions nanotubulaires constituées de f-actine et de tubuline, modifiait la sécrétion paracrine des cellules souches hMADS. Les cellules souches ainsi reprogrammées, par les échanges intercellulaires de matériel cardiaque améliorent de façon significative leur potentiel angiogénique et de chémoattraction in vitro. Le bénéfice sur les MSCs de la coculture a été confirmé dans le traitement de l'insuffisance cardiaque post-infarctus chez la souris. Dans ce modèle nous avons pu montré que les cellules souches cocultivées avaient un capacité de régénération myocardique nettement supérieures aux cellules souches naives et que l'amélioration fonctionnelle était associée à une stimulation de la vascularisation et de la mobilisation des progéniteurs cardiaques endogènes. Enfin, des résultats similaires ont été observés dans notre modèle préclinique d'ischémie-reperfusion myocardique porcin encourageant la poursuite des travaux de recherche basés sur la communication intercellulaire afin d'optimiser l'efficacité thérapeutique des cellules souches dans la reconstruction cardiaque..En conclusion, nos travaux ont mis en évidence que la communication intercellulaire entre les cardiomyocytes souffrants et les cellules souches conditionnent de façon importante les effets thérapeutiques des cellules souches et que la manipulation ex vivo de ces phénomènes pourrait constituer une approche pour optimiser la thérapie cellulaire cardiaque chez l'homme. / Cell therapies represent one of the most promising approaches to rebuild damaged heart particularly those based on mesenchymal stem cells (MSC). These cells are known for their plasticity, immune privilege and strong self-renewal ability. Intramyocardial delivery of MSC ameliorates heart function after infarction in clinical studies but mechanisms by which MSC exert their therapeutic action is far from being understood and further investigations are required for improving the modest efficiency observed.The objective of this work was to better understand mechanisms by which MSC repair damaged myocardium in order to develop strategies optimizing their therapeutic effects. To mimic in vitro the microenvironment of an injured heart, we developed a species mismatch co-culture system consisting of terminally-differentiated cardiomyocytes (CM) and MSC from adipose tissue called hMADS for human Multipotent Adipose Derived Stem cells. Previous works in the laboratory showed that cell-to-cell communication processes between CM and hMADS involving tunnelling nanotubes (TNT) reprogram adult CM toward a progenitor-like state.During my PhD, we found that crosstalk between hMADS and CM through TNT altered the secretion by hMADS of cardioprotective soluble factors and thereby maximized the capacity of stem cells to promote angiogenesis and chemotaxis of bone-marrow multipotent cells. Additionally, engraftment experiments into mouse infracted hearts revealed that in vitro preconditioning of hMADS with CM increased the cell therapy efficacy of naive stem cells. Functional improvement was associated with higher angiogenesis and homing of bone marrow progenitor cells at the infarction site. Finally, similar results were observed in our preclinical study using a porcine model of myocardial infarction.In conclusion, our findings established the relationship between the paracrine regenerative action of MSC and the nanotubular croostalk with CM and emphasize that ex vivo manipulation of theses communication processes might be of interest for optimizing current cardiac cell therapies.
5

Mitochondrial Transfer by Human Mesenchymal Stromal Cells Ameliorates Hepatocyte Lipid Load in a Mouse Model of NASH

Hsu, Mei-Ju, Karkossa, Isabel, Schäfer, Ingo, Christ, Madlen, Kühne, Hagen, Schubert, Kristin, Rolle-Kampczyk, Ulrike E., Kalkhof, Stefan, Nickel, Sandra, Seibel, Peter, von Bergen, Martin, Christ, Bruno 13 April 2023 (has links)
Mesenchymal stromal cell (MSC) transplantation ameliorated hepatic lipid load; tissue inflammation; and fibrosis in rodent animal models of non-alcoholic steatohepatitis (NASH) by as yet largely unknown mechanism(s). In a mouse model of NASH; we transplanted bone marrow-derived MSCs into the livers; which were analyzed one week thereafter. Combined metabolomic and proteomic data were applied to weighted gene correlation network analysis (WGCNA) and subsequent identification of key drivers. Livers were analyzed histologically and biochemically. The mechanisms of MSC action on hepatocyte lipid accumulation were studied in co-cultures of hepatocytes and MSCs by quantitative image analysis and immunocytochemistry. WGCNA and key driver analysis revealed that NASH caused the impairment of central carbon; amino acid; and lipid metabolism associated with mitochondrial and peroxisomal dysfunction; which was reversed by MSC treatment. MSC improved hepatic lipid metabolism and tissue homeostasis. In co-cultures of hepatocytes and MSCs; the decrease of lipid load was associated with the transfer of mitochondria from the MSCs to the hepatocytes via tunneling nanotubes (TNTs). Hence; MSCs may ameliorate lipid load and tissue perturbance by the donation of mitochondria to the hepatocytes. Thereby; they may provide oxidative capacity for lipid breakdown and thus promote recovery from NASH-induced metabolic impairment and tissue injury.
6

Mechanism of spreading of prion and polyglutamine aggregates and role of the cellular prion protein in Huntington’s disease / Mécanisme de dissémination du prion ainsi que des agrégats polyglutaminiques et rôle de la protéine cellulaire prion dans la maladie de Huntington

Costanzo, Maddalena 28 September 2012 (has links)
La pathogénèse de la plupart des maladies neurodégénératives incluant les maladies transmissibles comme les encéphalopathies à prion, les maladies génétiques de type maladie de Huntington et les maladies sporadiques comme les maladies d’Alzheimer et de Parkinson est directement liée à la formation d’agrégats protéiques fibrillaires. Pendant de nombreuses années, le concept de dissémination et d’infectivité de ces agrégats a été réservé aux maladies à prion. Cependant, de récents résultats montrent que ces protéines amyloidiques extracellulaires (β-amyloïde) comme intracellulaires (α-synucléine, tau, huntingtin) sont capables de bouger (et possiblement de se répliquer) d’une zone à l’autre du cerveau à la façon des prions (Brundin et al., 2010; Jucker and Walker, 2011; Aguzzi and Rajendran, 2009). Récemment une nouveau lien a été établie entre prions et différentes protéinopathies à agrégats. Il a été suggéré que le prion cellulaire, PrPC, dont la forme pathologique (PrPSc) est responsable des maladies à prion, pourrait servir de médiateur dans la toxicité de la protéine β-amyloïde impliquée dans la maladie d’Alzheimer comme dans d’autres conformations-β, indépendamment de la propagation des prions infectieux (revue de Biasini et al., 2012). Malgré une intense recherche sur les maladies neurodégénératives à prion ou non, de nombreuses questions restent ouvertes à la fois au niveau du mécanisme de dissémination des agrégats protéiques que du mécanisme de toxicité. Dans la première partie de ma thèse, j’ai contribué à étudier le rôle de cellules dendritiques (DCs) dans la dissémination de l’infection à prion aux neurones. J’ai démontré que le transfert de PrPSc des cellules dendritiques infectées par un homogénat de cerveau infecté par du prion vers les neurones était dû à contact direct entre ces cellules et a pour résultat la transmission de l’infectivité aux neurones en co-culture. Ces résultats confirment le possible rôle des cellules dendritiques dans la propagation du prion de la périphérie vers le système nerveux central. J’ai aussi trouvé un potentiel mécanisme de transfert de PrPSc des cellules dendritiques aux neurones via des nanotubes (TNTs) et exclu l’implication de la sécrétion de PrPSc dans notre système. Dans la seconde partie de ma thèse, j’ai étudié les mécanismes de dissémination et de toxicité des agrégats protéiques huntingtin et le possible rôle de PrPC dans ces évènements. J’ai démontré que les agrégats Htt sont transférés entre les lignées de cellules neuronales et les neurones primaires et qu’un contact direct cellule à cellule est requis. De même, j’ai montré l’implication des TNTs dans ce transfert et l’agrégation des Htt sauvages endogènes dans les neurones primaires, probablement en suivant le transfert des agrégats Htt. La dernière partie de mes résultats montre que PrPC est impliqué dans la propagation de la toxicité induite par les Htt mutants dans des neurones primaires en culture. / The pathogenesis of most neurodegenerative diseases, including transmissible diseases like prion encephalopathies, inherited disorders like Huntington’s disease, and sporadic diseases like Alzheimer’s and Parkinson’s diseases, appear to be directly linked to the formation of fibrillar protein aggregates. For many years, the concept of aggregate spreading and infectivity has been confined to prion diseases. However, recent evidence indicate that both extracellular (e.g. amyloid-β) and intracellular (α- synuclein, tau, huntingtin) amyloidogenic protein are able to move (and possibly replicate) within the brains of affected individuals, thereby contributing to the spread of pathology in a prion-like manner (Brundin et al., 2010; Jucker and Walker, 2011; Aguzzi and Rajendran, 2009). Recently another intriguing connection has been made between prions and other aggregation proteinopathies, as it was suggested that the cellular prion protein, PrPC, whose pathological counterpart is responsible for prion diseases, possibly mediates the toxicity of Aβ, the pathogenic protein in Alzheimer’s disease, and of other β- conformers independently of the propagation of infectious prions (reviewed in Biasini et al., 2012). However, despite the intense research, many questions in prion and non-prion neurodegenerative diseases are still open regarding both the mechanism of protein aggregate spreading and the mechanism of toxicity. In the first part of my thesis, I contributed to investigate the role of DCs (dendritic cells) in the spreading of prion infection to neuronal cells. I demonstrated that the transfer of PrPSc from DCs (loaded with prion infected brain homogenate) to primary neurons was triggered by direct cell–cell contact and resulted in transmission of infectivity to the co-cultured neurons. These data confirm the possible role of DCs in prion spreading from the periphery to the nervous system. I also provided a plausible transfer mechanism of PrPSc through tunneling nanotubes (TNTs) shown to connect DCs to primary neurons and excluded the involvement of PrPSc secretion in our system. In the second part of my thesis, I investigated the mechanisms of the spreading and toxicity of Htt aggregates and the possible role of PrPC in these events. I demonstrated that Htt aggregates transfer between neuronal cells and primary neurons and that cell-cell contact is required. I also showed the involvement of TNTs in the transfer and reported the aggregation of endogenous wild-type Htt in primary neurons, possibly following the transfer of Htt aggregates. Finally, the last part of my results provides evidences that PrPC is involved in the spreading of the toxicity mediated by mutant Htt in primary neuronal cultures.
7

Cellular and molecular mechanisms of neurovascular coupling in the retina

Villafranca-Baughman, Deborah 01 1900 (has links)
Cette thèse de doctorat englobe deux projets majeurs visant à étudier l'interaction entre les nanotubes à effet tunnel inter-péricytes (IP-TNT), le couplage neurovasculaire et la modulation des cellules gliales dans le contexte du glaucome. Le premier projet se concentre sur la caractérisation et l'importance fonctionnelle des IP-TNT dans la régulation du couplage neurovasculaire, tandis que le second projet explore le rôle des cellules gliales, en particulier S100Β, dans la modulation des réponses des péricytes pendant l'hypertension oculaire (HTO), un facteur de risque important pour le développement du glaucome. Dans le premier projet, nous avons étudié la présence et les implications fonctionnelles des IP-TNT dans l'unité neurovasculaire. Grâce à des techniques d'imagerie avancées et à des expériences d'imagerie en direct chez la souris, nous avons visualisé et caractérisé ces nanotubes à effet tunnel qui relient les péricytes voisins dans la rétine. Nous avons découvert que les IP-TNT jouent un rôle crucial en facilitant la communication intercellulaire et la signalisation calcique entre les péricytes. Ces nanotubes contribuent à la régulation du flux sanguin capillaire et au couplage neurovasculaire, assurant l'apport efficace d'oxygène et de nutriments aux neurones actifs. Nos résultats mettent en lumière les interactions cellulaires complexes au sein de l'unité neurovasculaire et élargissent notre compréhension des mécanismes qui sous-tendent le couplage neurovasculaire. Dans le second projet, nous nous sommes concentrés sur le rôle des cellules gliales, en particulier la protéine S100Β qui se lie au calcium, dans la modulation des réponses des péricytes au cours de l'HTO, une caractéristique pathologique clé du glaucome. Grâce à une combinaison d'expériences in vivo, d'analyses moléculaires et de techniques d'imagerie, nous avons étudié l'impact de la S100Β sur les niveaux de calcium des péricytes et sur le flux sanguin capillaire. Nous avons observé que la S100Β est régulée à la hausse dans les cellules gliales, y compris les cellules de Müller et les astrocytes, au cours de l'HTO. L'administration de la protéine recombinante exogène S100Β a exacerbé l'influx de calcium intra-péricyte et altéré le flux sanguin capillaire, tandis que le blocage de la fonction S100Β a amélioré les niveaux de calcium des péricytes et rétabli un flux sanguin basal. La neutralisation de la S100Β a également protégé les cellules ganglionnaires de la rétine de la mort induite par l'HTO. Ces résultats mettent en évidence le rôle critique des cellules gliales et de la S100Β dans les déficits du couplage neurovasculaire au cours du glaucome, et donnent un aperçu des cibles thérapeutiques potentielles pour préserver la santé et la fonction de la rétine. Collectivement, les résultats des deux projets contribuent à notre compréhension de l'interaction complexe entre les IP-TNT, le couplage neurovasculaire et la modulation des cellules gliales dans le contexte du glaucome. En élucidant le rôle des IP-TNT dans la régulation neurovasculaire et l'impact des cellules gliales, en particulier la S100Β, sur les réponses des péricytes, cette thèse fournit des informations précieuses sur les mécanismes sous-jacents de la pathogenèse du glaucome. Ces résultats peuvent ouvrir la voie au développement de stratégies thérapeutiques innovantes ciblant les IP-TNT et la modulation médiée par les cellules gliales afin de préserver la fonction rétinienne et de prévenir la perte de vision dans le glaucome et les maladies neurodégénératives associées / This PhD thesis encompasses two major projects aimed at investigating the interplay between interpericyte tunneling nanotubes (IP-TNTs), neurovascular coupling, and glial cell modulation in the context of glaucoma. The first project focuses on the characterization and functional significance of IP-TNTs in neurovascular coupling regulation, while the second project explores the role of glial cells, particularly S100Β, in modulating pericyte responses during ocular hypertension (OHT), an important risk factor for developing glaucoma. In the first project, we investigated the presence and functional implications of IP-TNTs in the neurovascular unit. Through advanced imaging techniques and live imaging experiments in mice, we visualized and characterized these tunneling nanotubes connecting neighboring pericytes in the retina. We found that IP-TNTs play a crucial role in facilitating intercellular communication and calcium signaling between pericytes. These nanotubes contribute to the regulation of capillary blood flow and neurovascular coupling, ensuring the efficient delivery of oxygen and nutrients to active neurons. Our findings shed light on the intricate cellular interactions within the neurovascular unit and expand our understanding of the mechanisms underlying neurovascular coupling. In the second project, we focused on the role of glial cells, specifically the calcium-binding protein S100Β, in modulating pericyte responses during OHT, a key pathological feature of glaucoma. Through a combination of in vivo experiments, molecular analyses, and imaging techniques, we investigated the impact of S100Β on pericyte calcium levels and capillary blood flow. We observed that S100Β is upregulated in glial cells, including Müller cells and astrocytes, during OHT. Administration of recombinant S100Β protein exacerbated intrapericyte calcium influx and impaired capillary blood flow, while blocking S100Β function improved pericyte calcium levels and restored normal blood flow. Notably, S100Β neutralization also protected retinal ganglion cells from OHT-induced death. These findings highlight the critical role of glial cells and S100Β in neurovascular coupling deficits during glaucoma, providing insights into potential therapeutic targets for preserving retinal health and function. Collectively, the results from both projects contribute to our understanding of the complex interplay between IP-TNTs, neurovascular coupling, and glial cell modulation in the context of glaucoma. By elucidating the role of IP-TNTs in neurovascular regulation and the impact of glial cells, particularly S100Β, on pericyte responses, this thesis provides valuable insights into the underlying mechanisms of glaucoma pathogenesis. These findings may pave the way for the development of innovative therapeutic strategies targeting IP-TNTs and glial cell-mediated modulation to preserve retinal function and prevent vision loss in glaucoma and related neurodegenerative diseases

Page generated in 0.4671 seconds