• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 16
  • 3
  • 1
  • Tagged with
  • 80
  • 80
  • 63
  • 59
  • 18
  • 17
  • 15
  • 15
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Diseño constructal de conductos elípticos de refrigeración en álabes de turbinas de gas

Bosc, Cristian January 2017 (has links)
As turbinas a gás (TG) são máquinas usadas para transformar a energia térmica liberada na combustão de um hidrocarboneto em trabalho. A parte crítica para a concepção das TG encontra-se nas secções expostas a condições mecânicas e térmicas extremas, tais como as primeiras pás da turbina. A eficiência das TG é limitada pela temperatura máxima que podem suportar os materiais das pás sem escoamento ou deformação. Atualmente, a temperatura máxima de operação encontra-se acima da temperatura de escoamento do material, permitido pelo uso de técnicas de revestimentos cerâmicos com uma baixa condutividade térmica, (revestimento de proteção térmica, TBC) e técnicas de arrefecimento das pás. O arrefecimento interno é realizado com canais internos através dos quais escorre ar que é extraído do compressor principal. Como esse ar não é utilizado para gerar trabalho, é necessário otimizar as técnicas de arrefecimento. O presente trabalho melhora o nível de arrefecimento interno de uma pá de TG, através da otimização do desenho dos canais de arrefecimento mediante a utilização da Teoria Constructal Uma configuração com dois canais elípticos de diferentes geometrias é analisado, com o objetivo de otimizar a sua posição, área e razão de aspecto, procurando gerar uma redução da temperatura máxima no metal. São desenvolvidos quatro modelos com diferentes condições de contorno, incluindo no terceiro modelo a transferência de calor por convecção e radiação e um revestimento de barreira térmica. As conclusões gerais do trabalho estabelecem que os requisitos de máxima eficiência de dissipação de calor e mínima temperatura máxima no metal podem gerar modelos levemente diferentes. No entanto, ambos indicadores do desempenho térmico da pá estão intimamente relacionados, porem, sem grande variação de um design ótimo com relação ao outro, nem uma grande variação nas magnitudes da temperatura máxima ou da eficiência. O design que fornece a mínima temperatura máxima no metal é composto por canais elípticos achatados com a menor razão de aspecto e de igual área, distribuindo o ar de arrefecimento na maior quantidade de canais possíveis. A aplicação do Design Constructal nos canais internos de arrefecimento em TG reduz a temperatura máxima no metal, podendo constituir uma melhoria na vida útil das pás.
62

Resfriamento de ar de entrada em turbinas a gás no parque gerador elétrico brasileiro / Cooling air inlet gas turbine electric generating facilities in Brazil

Manoel Lélio Martins de Carvalho Junior 27 April 2012 (has links)
Nos últimos 15 anos houve um grande aumento na presença de turbinas a gás no parque gerador de eletricidade brasileiro. O Brasil tem predominantemente climas tropicais e subtropicais com temperaturas oscilando entre 20 e 35C na maior parte do ano. A máxima potência que pode ser gerada por uma turbina a gás aumenta com a redução da temperatura do ar de entrada na turbina. Decorre daí o interesse na aplicação de sistemas de resfriamento do ar de entrada de turbinas. Dentre os sistemas de resfriamento, os de aplicação mais simples são o de resfriamento por meio evaporativo rígido e o de resfriamento por ciclo de compressão com acionamento elétrico. Não há na literatura um estudo sistemático da aplicação de sistemas de resfriamento de ar de entrada de turbinas a gás para operação no Brasil. Este trabalho estuda a aplicação dos dois tipos mais simples de sistemas de resfriamento de ar de entrada em turbinas operando ou a serem instaladas no território brasileiro. Um modelo para simulação da resposta de turbinas a gás às variações nas condições climáticas do ar de entrada (temperatura, umidade e pressão atmosférica) é desenvolvido. O modelo necessita como parâmetros somente de dados publicados em catálogo pelo fabricante da turbina. A simulação é feita para 27 localidades brasileiras comparando a operação de um mesmo tipo de turbina sem resfriamento e com os dois tipos de resfriamento. O dados climáticos usados são dos tipos anos metereológicos típicos e anos teste de referência. O modelo de turbina desenvolvido simula de maneira satisfatória as curvas de uma turbina comercial do tipo heavy duty. Um aumento de energia anual gerada de até 4,2% foi observado para o sistema de resfriamento por meio evaporativo rígido. O aumento de energia no resfriamento evaporativo depende da depressão de bulbo úmido média do local de instalação da turbina. Para o resfriamento por ciclo de compressão com acionamento elétrico o aumento observado foi de até 11,2%. O aumento de energia para este tipo de sistema depende da temperatura de bulbo seco média do local. / In the last 15 years an ever increasing presence of gas turbines was felt in electrical power generation in Brazil. Tropical and subtropical climates dominate most of the country, with temperatures ranging from 20 to 35C during most of the year. The maximum power that can be generated by a gas turbine increases at lower inlet air temperatures. Consequently, there is great interest in applying inlet air cooling systems in gas turbines. Among the inlet air cooling systems, the evaporative cooling by rigid wet media and the compression thermal cycle with electrical power chiller systems are the ones with most straightforward implementation. There is no systematic study of the application of gas turbine inlet air cooling systems for turbines operating in Brazil. This thesis studies the application of the two methods of gas turbine inlet air cooling mentioned above in turbines operating or to be installed in Brazil. A model to simulate the response of gas turbines to changes in the inlet air (temperature, humidity and pressure) is developed. The model uses turbine catalogue data as parameters. The simulation is performed for 27 Brazilian locations, comparing the operation of a model of turbine operating with and without cooling systems, for both types of cooling systems. Typical meteorological year and test reference year data are used in the study. The turbine model developed reproduces the turbines data curves with satisfactory accuracy. An annual increase in energy generation of up to 4,2% was observed for evaporative cooling. The energy gain for evaporative cooling depends on the annual mean wet bulb depression of the local. The compression thermal cycle increases the annual energy generation by up to 11,2%. The energy increase in this type of system depends on the mean dry bulb temperature of the local.
63

Diseño constructal de conductos elípticos de refrigeración en álabes de turbinas de gas

Bosc, Cristian January 2017 (has links)
As turbinas a gás (TG) são máquinas usadas para transformar a energia térmica liberada na combustão de um hidrocarboneto em trabalho. A parte crítica para a concepção das TG encontra-se nas secções expostas a condições mecânicas e térmicas extremas, tais como as primeiras pás da turbina. A eficiência das TG é limitada pela temperatura máxima que podem suportar os materiais das pás sem escoamento ou deformação. Atualmente, a temperatura máxima de operação encontra-se acima da temperatura de escoamento do material, permitido pelo uso de técnicas de revestimentos cerâmicos com uma baixa condutividade térmica, (revestimento de proteção térmica, TBC) e técnicas de arrefecimento das pás. O arrefecimento interno é realizado com canais internos através dos quais escorre ar que é extraído do compressor principal. Como esse ar não é utilizado para gerar trabalho, é necessário otimizar as técnicas de arrefecimento. O presente trabalho melhora o nível de arrefecimento interno de uma pá de TG, através da otimização do desenho dos canais de arrefecimento mediante a utilização da Teoria Constructal Uma configuração com dois canais elípticos de diferentes geometrias é analisado, com o objetivo de otimizar a sua posição, área e razão de aspecto, procurando gerar uma redução da temperatura máxima no metal. São desenvolvidos quatro modelos com diferentes condições de contorno, incluindo no terceiro modelo a transferência de calor por convecção e radiação e um revestimento de barreira térmica. As conclusões gerais do trabalho estabelecem que os requisitos de máxima eficiência de dissipação de calor e mínima temperatura máxima no metal podem gerar modelos levemente diferentes. No entanto, ambos indicadores do desempenho térmico da pá estão intimamente relacionados, porem, sem grande variação de um design ótimo com relação ao outro, nem uma grande variação nas magnitudes da temperatura máxima ou da eficiência. O design que fornece a mínima temperatura máxima no metal é composto por canais elípticos achatados com a menor razão de aspecto e de igual área, distribuindo o ar de arrefecimento na maior quantidade de canais possíveis. A aplicação do Design Constructal nos canais internos de arrefecimento em TG reduz a temperatura máxima no metal, podendo constituir uma melhoria na vida útil das pás.
64

Análise comparativa do desempenho de turbocompressores veiculares com câmara de combustão tubular na microgeração de energia

Pinto, Daniel Vieira 19 September 2017 (has links)
Esta dissertação de mestrado apresenta o desenvolvimento de um trabalho que tem como objetivos avaliar a composição de turbocompressores veiculares para microgeração de energia e desenvolver um modelo de câmara de combustão tubular para equipar microturbinas a gás derivadas de turbocompressores. No desenvolvimento do trabalho, utilizando o software Cycle-Tempo, foi feita a avaliação de possíveis configurações de microturbinas a gás derivadas de turbocompressores, no que diz respeito ao número de eixos e dispositivos de aumento de eficiência térmica (intercooler, recuperador de calor e reaquecedor). No total foram simuladas, dez diferentes configurações, sendo que as análises foram feitas diretamente nos parâmetros de eficiência térmica dos conjuntos avaliando-se a relação entre a energia aportada pelo combustível e a energia entregue num gerador elétrico hipotético. Na sequência são definidos os turbocompressores para compor uma determinada configuração de microturbina a gás e, para tanto, utilizaram-se os mapas de desempenho dos turbocompressores de um fabricante. A partir dos parâmetros de operação dos equipamentos foi desenvolvido um modelo tridimensional de câmara de combustão em software de CAD. O modelo passou por cinco etapas de simulações em Dinâmica dos Fluidos Computacional (Computational Fluid Dynamics - CFD). As primeiras três etapas serviram para desenvolver e aprimorar o modelo tridimensional de câmara de combustão e, por limitações do software, não envolveram combustão. Utilizando condições de contorno operacionais, foram avaliados: o perfil de velocidades ao longo da câmara de combustão, a perda de pressão, a intensidade da turbulência, a homogeneização entre os reagentes ar e combustível e a divisão do fluxo mássico em cada seção da câmara de combustão. A partir do modelo tridimensional foi desenvolvido um protótipo da câmara de combustão, construído a partir de tubos comerciais de PVC. O protótipo foi avaliado experimentalmente com escoamento do ar a temperatura ambiente, utilizando o acoplamento em série entre um ventilador centrífugo e um soprador. No experimento foi avaliada a divisão de fluxo mássico de ar em cada seção da câmara de combustão e a perda de pressão. As simulações CFD foram refeitas na quarta etapa, onde as condições de contorno foram os parâmetros de fluxo mássico, pressão e temperatura, obtidos experimentalmente. Com isto, pode ser feita a comparação direta entre os resultados obtidos experimentalmente e os resultados das simulações CFD. Concluindo o trabalho foi realizada a quinta etapa, onde foi inserida uma fonte de calor simulando o aporte de energia da combustão, permitindo a avaliação da temperatura na câmara de combustão. As simulações CFD indicaram resultados semelhantes ao que é previsto em bibliografia, no que diz respeito à divisão do fluxo mássico, perda de pressão e à distribuição de velocidades. Já as avaliações experimentais apresentaram incerteza de medição elevada para a divisão de fluxo mássico. Quanto à perda de pressão o método experimental mostrou-se adequado. / Submitted by Ana Guimarães Pereira (agpereir@ucs.br) on 2017-10-25T17:02:08Z No. of bitstreams: 1 Dissertacao Daniel Vieira Pinto.pdf: 7889874 bytes, checksum: a3dd417da94a3175c511cb73b3577fd2 (MD5) / Made available in DSpace on 2017-10-25T17:02:08Z (GMT). No. of bitstreams: 1 Dissertacao Daniel Vieira Pinto.pdf: 7889874 bytes, checksum: a3dd417da94a3175c511cb73b3577fd2 (MD5) Previous issue date: 2017-10-25 / This master's work presents the development of a work that has the objective of evaluating the composition of vehicular turbochargers for microgeneration of energy and to develop a tubular combustion chamber model to equip gas microturbines derived from turbochargers. In the development of the work, using the software Cycle-Tempo, it is made the evaluation of possible configurations of gas micro turbines derived from turbochargers, with respect to the number of axes and devices of increasing thermal efficiency (intercoolers, heat recover e reheater). In total, ten different configurations were simulated, and the analyzes were done directly in the thermal efficiency parameters of the sets, evaluating the relation between the energy contributed by the fuel and the energy delivered in a hypothetical electric generator. Turbochargers are then defined to form a particular gas micro turbine configuration and, being used the turbocharger performance maps from a manufacturer. From the operating parameters of the equipment, a three-dimensional combustion chamber model was developed in CAD software. The model went through five stages of simulations in Computational Fluid Dynamics (CFD). The first three steps served to develop and improve the three-dimensional model of combustion chamber and, due to software limitations, did not involve combustion. Using operational contour conditions, the velocity profile along the combustion chamber, the pressure loss, the turbulence intensity, the homogenization between the air and fuel reactants and the division of the mass flow in each section of the combustion chamber were evaluated. From the three-dimensional model was developed a prototype of the combustion chamber, built from commercial PVC pipes. The prototype was evaluated experimentally with air flow at room temperature using the coupling in series between a centrifugal fan and a blower. In the experiment the air mass flow division in each section of the combustion chamber and the loss of pressure were evaluated. The CFD simulations were redone in the fourth stage, where the boundary conditions were the parameters of mass flow, pressure and temperature, obtained experimentally. Thus, a direct comparison between the results obtained experimentally and the results of CFD simulations can be made. At the end of the work the fifth step was performed, where a heat source was inserted simulating the energy input of the combustion, allowing the temperature evaluation in the combustion chamber. The CFD simulations indicated results similar to those predicted in the literature, regarding the division of mass flow, pressure loss and velocity distribution. However, the experimental evaluations presented high measurement uncertainty for the mass flow division. Regarding pressure loss, the experimental method proved to be adequate.
65

Diseño constructal de conductos elípticos de refrigeración en álabes de turbinas de gas

Bosc, Cristian January 2017 (has links)
As turbinas a gás (TG) são máquinas usadas para transformar a energia térmica liberada na combustão de um hidrocarboneto em trabalho. A parte crítica para a concepção das TG encontra-se nas secções expostas a condições mecânicas e térmicas extremas, tais como as primeiras pás da turbina. A eficiência das TG é limitada pela temperatura máxima que podem suportar os materiais das pás sem escoamento ou deformação. Atualmente, a temperatura máxima de operação encontra-se acima da temperatura de escoamento do material, permitido pelo uso de técnicas de revestimentos cerâmicos com uma baixa condutividade térmica, (revestimento de proteção térmica, TBC) e técnicas de arrefecimento das pás. O arrefecimento interno é realizado com canais internos através dos quais escorre ar que é extraído do compressor principal. Como esse ar não é utilizado para gerar trabalho, é necessário otimizar as técnicas de arrefecimento. O presente trabalho melhora o nível de arrefecimento interno de uma pá de TG, através da otimização do desenho dos canais de arrefecimento mediante a utilização da Teoria Constructal Uma configuração com dois canais elípticos de diferentes geometrias é analisado, com o objetivo de otimizar a sua posição, área e razão de aspecto, procurando gerar uma redução da temperatura máxima no metal. São desenvolvidos quatro modelos com diferentes condições de contorno, incluindo no terceiro modelo a transferência de calor por convecção e radiação e um revestimento de barreira térmica. As conclusões gerais do trabalho estabelecem que os requisitos de máxima eficiência de dissipação de calor e mínima temperatura máxima no metal podem gerar modelos levemente diferentes. No entanto, ambos indicadores do desempenho térmico da pá estão intimamente relacionados, porem, sem grande variação de um design ótimo com relação ao outro, nem uma grande variação nas magnitudes da temperatura máxima ou da eficiência. O design que fornece a mínima temperatura máxima no metal é composto por canais elípticos achatados com a menor razão de aspecto e de igual área, distribuindo o ar de arrefecimento na maior quantidade de canais possíveis. A aplicação do Design Constructal nos canais internos de arrefecimento em TG reduz a temperatura máxima no metal, podendo constituir uma melhoria na vida útil das pás.
66

Análise comparativa do desempenho de turbocompressores veiculares com câmara de combustão tubular na microgeração de energia

Pinto, Daniel Vieira 19 September 2017 (has links)
Esta dissertação de mestrado apresenta o desenvolvimento de um trabalho que tem como objetivos avaliar a composição de turbocompressores veiculares para microgeração de energia e desenvolver um modelo de câmara de combustão tubular para equipar microturbinas a gás derivadas de turbocompressores. No desenvolvimento do trabalho, utilizando o software Cycle-Tempo, foi feita a avaliação de possíveis configurações de microturbinas a gás derivadas de turbocompressores, no que diz respeito ao número de eixos e dispositivos de aumento de eficiência térmica (intercooler, recuperador de calor e reaquecedor). No total foram simuladas, dez diferentes configurações, sendo que as análises foram feitas diretamente nos parâmetros de eficiência térmica dos conjuntos avaliando-se a relação entre a energia aportada pelo combustível e a energia entregue num gerador elétrico hipotético. Na sequência são definidos os turbocompressores para compor uma determinada configuração de microturbina a gás e, para tanto, utilizaram-se os mapas de desempenho dos turbocompressores de um fabricante. A partir dos parâmetros de operação dos equipamentos foi desenvolvido um modelo tridimensional de câmara de combustão em software de CAD. O modelo passou por cinco etapas de simulações em Dinâmica dos Fluidos Computacional (Computational Fluid Dynamics - CFD). As primeiras três etapas serviram para desenvolver e aprimorar o modelo tridimensional de câmara de combustão e, por limitações do software, não envolveram combustão. Utilizando condições de contorno operacionais, foram avaliados: o perfil de velocidades ao longo da câmara de combustão, a perda de pressão, a intensidade da turbulência, a homogeneização entre os reagentes ar e combustível e a divisão do fluxo mássico em cada seção da câmara de combustão. A partir do modelo tridimensional foi desenvolvido um protótipo da câmara de combustão, construído a partir de tubos comerciais de PVC. O protótipo foi avaliado experimentalmente com escoamento do ar a temperatura ambiente, utilizando o acoplamento em série entre um ventilador centrífugo e um soprador. No experimento foi avaliada a divisão de fluxo mássico de ar em cada seção da câmara de combustão e a perda de pressão. As simulações CFD foram refeitas na quarta etapa, onde as condições de contorno foram os parâmetros de fluxo mássico, pressão e temperatura, obtidos experimentalmente. Com isto, pode ser feita a comparação direta entre os resultados obtidos experimentalmente e os resultados das simulações CFD. Concluindo o trabalho foi realizada a quinta etapa, onde foi inserida uma fonte de calor simulando o aporte de energia da combustão, permitindo a avaliação da temperatura na câmara de combustão. As simulações CFD indicaram resultados semelhantes ao que é previsto em bibliografia, no que diz respeito à divisão do fluxo mássico, perda de pressão e à distribuição de velocidades. Já as avaliações experimentais apresentaram incerteza de medição elevada para a divisão de fluxo mássico. Quanto à perda de pressão o método experimental mostrou-se adequado. / This master's work presents the development of a work that has the objective of evaluating the composition of vehicular turbochargers for microgeneration of energy and to develop a tubular combustion chamber model to equip gas microturbines derived from turbochargers. In the development of the work, using the software Cycle-Tempo, it is made the evaluation of possible configurations of gas micro turbines derived from turbochargers, with respect to the number of axes and devices of increasing thermal efficiency (intercoolers, heat recover e reheater). In total, ten different configurations were simulated, and the analyzes were done directly in the thermal efficiency parameters of the sets, evaluating the relation between the energy contributed by the fuel and the energy delivered in a hypothetical electric generator. Turbochargers are then defined to form a particular gas micro turbine configuration and, being used the turbocharger performance maps from a manufacturer. From the operating parameters of the equipment, a three-dimensional combustion chamber model was developed in CAD software. The model went through five stages of simulations in Computational Fluid Dynamics (CFD). The first three steps served to develop and improve the three-dimensional model of combustion chamber and, due to software limitations, did not involve combustion. Using operational contour conditions, the velocity profile along the combustion chamber, the pressure loss, the turbulence intensity, the homogenization between the air and fuel reactants and the division of the mass flow in each section of the combustion chamber were evaluated. From the three-dimensional model was developed a prototype of the combustion chamber, built from commercial PVC pipes. The prototype was evaluated experimentally with air flow at room temperature using the coupling in series between a centrifugal fan and a blower. In the experiment the air mass flow division in each section of the combustion chamber and the loss of pressure were evaluated. The CFD simulations were redone in the fourth stage, where the boundary conditions were the parameters of mass flow, pressure and temperature, obtained experimentally. Thus, a direct comparison between the results obtained experimentally and the results of CFD simulations can be made. At the end of the work the fifth step was performed, where a heat source was inserted simulating the energy input of the combustion, allowing the temperature evaluation in the combustion chamber. The CFD simulations indicated results similar to those predicted in the literature, regarding the division of mass flow, pressure loss and velocity distribution. However, the experimental evaluations presented high measurement uncertainty for the mass flow division. Regarding pressure loss, the experimental method proved to be adequate.
67

Modelagem dinâmica e controle de turbinas a gás.

Ricardo Ariane Silva Carrera 24 November 2006 (has links)
Neste trabalho discute-se o problema de modelagem dinâmica não-linear e o controle de turbinas a gás. O processo de modelagem leva em consideração as peculiaridades dos componentes básicos deste tipo de motor: compressor, câmara de combustão e turbina. Cada subsistema é estudado e depois integrado para compor um modelo não-linear de uma turbina a gás. O objetivo do sistema de controle projetado é regular a rotação do eixo, após solicitação de carga ao sistema, respeitando limites de esforço de controle e temperatura de operação da turbina. O modelo do compressor é baseado no trabalho de Gravdahl e Egeland e, basicamente, refere-se ao modelo de Moore-Greitzer para sistemas de compressão axiais, considerando a dinâmica de eixo nas equações. O modelo termodinâmico de câmara de combustão incorpora as equações de balanço de energia e de massa, utilizando o metano (CH4) como combustível. O modelo de turbina representa apenas a transformação da temperatura e vazão mássica do fluido de trabalho, em potência transmitida ao eixo. A função do controlador é regular a velocidade de rotação, sujeita a uma perturbação de carga, e, simultaneamente, respeitar a capacidade dos atuadores e os limites físicos construtivos do motor, evitando danos permanentes. Para isto são avaliadas diferentes estratégias de controle. A primeira diz respeito à injeção de combustível na câmara de combustão como variável de controle, a segunda usa injeção de ar com temperatura controlada e a terceira discute o problema multivariável e incorpora, à injeção de combustível, o controle do IGV (inlet guide vanes) que se refere à variação de geometria do compressor permitindo, assim, melhor regulação. Os parâmetros do controlador, para tanto, são ajustados por meio de técnicas de otimização não lineares (Nelder-Mead). Para permitir que modificações de parâmetros, estrutura de simulação e técnicas de integração sejam feitas de forma mais rápida e intuitiva, a estrutura modular é implementada em ambiente MATLAB/SIMULINK.
68

The influences of bypass ratio variation on runway performance of jet airplanes.

Rodrigo Figueira Mourão 15 April 2004 (has links)
The influences of bypass ratio variation of turbofan engines in airplane runway performance are investigated more deeply in this work utilising a take-off analysis software developed by Ishizuka (2003). An initial study was carried out by Mourão, Negrão and Barbosa (2003). The results are analysed and discussed according to the operational feasibility of operators and technical feasibility of engine manufacturers. The analysis is based on comparisons of gains/losses in take-off distance, accelerate-stop distance and take-off weight for a range of bypass ratio values. Also, suggestions for future studies and researches are given his document is intended also to provide satisfactory background information of the take-off process and its mandatory regulations (FAR Part25, 1998) as much for commercial airplanes as for military airplanes. The aim is to contribute to readers' knowledge interested instudying more deeply the particularities of this specific flight phase and improving its operational safety.
69

Three-dimensional flow calculations of axial compressors and turbines using CFD techniques.

Jesuino Takachi Tomita 07 January 2009 (has links)
With the advent of powerful computer hardware, Computational Fluid Dynamics (CFD) has been vastly used by researches and scientists to investigate flow behavior and its properties. The cost of CFD simulation is very small compared to the experimental arsenal as test facilities and wind-tunnels. In the last years many CFD commercial packages were developed and some of them possess prominence in industry and academia. However, some specific CFD calculations are particular cases and sometimes need special attention due to the complexity of the flow. In these cases, meticulous research becomes necessary. This is the case of turbomachinery flow calculations. The development of CFD codes applied to turbomachinery flow simulations and its implementation issues are not available. A few institutions have this type of knowledge. Each CFD code has its particularities. Developing a CFD code is very interest subject in academia. In this work, a computational code, written in FORTRAN, was developed to calculate internal flows in turbomachines using CFD techniques. The solver is capable of calculating the three-dimensional flows not only for turbomachines. For instance, internal and external flows of nozzles and airfoils can be calculated. The approach used allows the use of unstructured meshes of hexahedral elements. Euler, Navier-Stokes and turbulent equations can be calculated depending on the user settings. Diferent numerical schemes were implemented for time and space integration. Numerical tools to improve the stability and to increase the time-step (local time-step and implicit residual smoothing) were also implemented and all details are described in this work. The origin of this solver is to simulate flows in compressors and turbines. Therefore, both rotating and nonrotating frames of reference are calculated simultaneously. Hence, the verification and validation processes were run for both inertial and non-inertial systems. A step-by-step design procedure is presented in this work. It is very important to mention that to have a complete understanding of the flow physics in compressors and turbines the designer must have a solid knowledge of the operation of gas turbine components.
70

Aeroacoustics of dual-stream jets with application to turbofan engines.

Odenir de Almeida 26 June 2009 (has links)
A Computational Aeroacoustics (CAA) and a novel semi-empirical model is developed for predicting the noise generated by the jet flow through dual stream (coaxial) nozzles, as found in modern turbofan engines. The acoustic source model was developed in a 2D and 3D framework, based on the Lilley's Equations, following the traditional MGBK method from NASA Langley Research Center. The semi-empirical model was based on the Four-Source model from the Institute of Sound and Vibration (ISVR). This suite of methodologies provided a mean of investigating the mechanisms of noise generation and propagation of subsonic coaxial jet flows, as well as the noise prediction at different operating conditions. The work done contributed to the development and improvement of a numerical tool for jet noise prediction of dual-stream exhaust systems, commonly employed in turbofan engines. Such research also subsidies the improvement of semi-empirical methods used in the Center of Reference in Gas Turbine (ITA) for the noise prediction of turbofans in all operating conditions.

Page generated in 0.4434 seconds