• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 21
  • 10
  • 2
  • 1
  • Tagged with
  • 121
  • 121
  • 42
  • 40
  • 39
  • 32
  • 31
  • 31
  • 31
  • 29
  • 28
  • 26
  • 23
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Emulación de un aerogenerador conectado a la red a través de un sistema experimental Back-to-Back mediante la técnica "Hardware In The Loop"

Muñoz Jadán, Alexis Yanira January 2016 (has links)
Magíster en Ciencias de la Ingeniería, Mención Eléctrica / En la actualidad, el estudio de generación de electricidad por medio del recurso eólico es de gran importancia, por presentarse como solución para disminuir la contaminación ambiental al reemplazar los sistemas eléctricos a base de generación convencional por energía limpia. También, por constituir una vía de desarrollo para la sociedad al comunicarlo con la tecnología del mundo moderno. Sin embargo, debido a las dificultades que existen para realizar investigaciones de energía eólica con generadores reales, es necesario implementar prototipos que sean capaces de emular, aerogeneradores que serán utilizados en el trabajo de laboratorio. En este trabajo, mediante la técnica Hardware in the Loop , se logra en base a datos reales, emular el comportamiento de una turbina eólica en la plataforma de desarrollo Matlab/Simulink a través del sistema embebido que constituye el conversor de potencia en configuración Back-To-Back contenido en la unidad Triphase PM5F60R. Considerando perfiles de viento de distinta variabilidad con distintos valores medios y con un nivel de detalle adecuado de ingeniería, se estudia el desempeño de los sistemas de control correspondientes al aerogenerador, como: Pitch control y el algoritmo MPPT. En los cuáles se efectúan cambios en algunos parámetros importantes que caracterizan a las turbinas eólicas tales como: inercia, radio del aspa, curva aerodinámica, entre otros. Por otro lado, por medio de estrategias de control de corriente, basadas en múltiples controladores resonantes y amortiguamiento activo se logra compensar las resonancias causadas por los filtros LCL, inyectar corrientes con baja distorsión armónica y entregar potencia activa y reactiva variable a la red. Es así que, en este trabajo se identifican principalmente los siguientes aportes: Debido a que los aerogeneradores varían según su capacidad y modelo; mediante la técnica Hardware In The Loop ; se logra la emulación del aerogenerador y evita el uso de un aerogenerador real, otorgando flexibilidad en el diseño del mismo y su control. Así también, las estrategias de control de corriente por medio de controladores resonantes y metodología Active Damping, permite inyección de corriente a la red con baja distorsión armónica. Finalmente, la plataforma experimental implementada logra presentar un escenario cercano a la realidad de un sistema de generación eólica con conexión a la red por medio de un interface de electrónica de potencia. Su importancia radica debido a la validación de los resultados experimentales, en la habilidad para testear cada uno de los componentes que conforman el sistema implementado y realizar futuras investigaciones a cada uno de ellos de manera rigurosa. Así como también, es objeto de integración a otros sistemas, como por ejemplo, al de una micro-red en operación modo isla y modo red por medio de Droop Control.
52

Design de difusor aerodinâmico compacto para uma turbina eólica de pequena escala

Ximenes, Fernando Silveira January 2018 (has links)
Este trabalho tem como proposta desenvolver um difusor aerodinâmico compacto para uma turbina eólica de pequena escala, objetivando alcançar um melhor start rotacional (menor torque de partida para rotacionar) em baixas velocidades de vento. Um difusor é uma estrutura em forma de aro envolta ao rotor da turbina eólica, sua função é amplificar a captação e aceleração do vento, explorando os efeitos aerodinâmicos das zonas de vórtices de baixa pressão na saída do difusor. O estudo concentrar-se-á na manipulação da geometria dos difusores, analisando como seu design impacta no seu comportamento aerodinâmico impacta na capacidade do difusor equacionar as zonas de alta e baixa pressão ao longo de sua estrutura, essa relação é determinante para o efeito aerodinâmico que acelera o escoamento de ar, resultando em um start rotacional em baixas velocidade de vento. O ponto de partida para este trabalho são os estudos desenvolvidos por Ohya et al. (2010) sobre difusores compactos-flangeados (compact-type brimmed diffuser) para turbinas eólicas, denominado Wind-lens Technology. Para alcançar os objetivos, esta pesquisa vai utilizar simulações por CFD com software de túnel de vento virtual e ensaios experimentais em túnel de vento físico para avaliar o comportamento dinâmico (turbina + difusor). Foram desenvolvidas dezenove geometrias a partir de uma área construtiva padronizada para o design de difusores. Desenvolveu-se também, a partir dos resultados encontrados, um MFI (microseparador de fluxo interno), que consiste em uma estrutura adicional com função de potencializar as zonas de vórtices (baixa pressão) no plano de saída do escoamento de ar dos difusores. Os resultados mostraram que a manipulação da geometria do difusor produziu resultados promissores em comparação com o modelo de referência, alcançando em algumas geometrias de difusores um melhor start rotacional. O MFI mostrou-se eficaz para potencializar as zonas de baixa pressão e melhorou o start rotacional. Ao final, definiu-se dois modelos de difusores e suas respectivas versões com MFI como as melhores opções para o start rotacional. / This work aims to develop a compact wind turbine for a turbine and a small scale, aiming at a better rotational start at low wind speeds (lower starting torque to rotate). A diffuser is a rim-shaped structure wrapped around the wind turbine rotor, its function is to amplify the wind uptake and acceleration, exploiting the aerodynamic effects of the low-pressure vortex zones at the diffuser outlet. The study will focus on the manipulation of the diffuser geometry, analyzing how its design impacts on its aerodynamic behavior, especially on the diffuser's ability to equate the high and low pressure zones along its structure, this relation is decisive for the aerodynamic effect that accelerates the air flow, resulting in a rotational start at low wind speeds. The basis for this work are studies developed by Ohya et al. (2010) on compact-flanged diffusers for wind turbines, called Wind-lens Technology. To achieve the objectives, this research will use CFD simulations with virtual wind tunnel software and experimental tests in physical wind tunnel to evaluate the dynamic behavior (turbine + diffuser). Nineteen geometries were developed from a standardized design area for the design of diffusers. An MFI (internal flow microseparator) has also been developed, which is an additional structure whose function is to potentiate the low pressure zones of the diffusers. The results showed that the manipulation of the diffuser geometry produced promising results in comparison to the reference model, reaching in some conditions superior results in RPM and initial start. The MFI proved to be effective in boosting the low pressure zones and improved the initial start. At the end, two models of diffusers and their respective versions with MFI were defined as the best options for the initial start.
53

Análise numérica da influência de fatores atmosféricos na esteira aerodinâmica de turbinas eólicas

Ludwig, Daniel Evandro January 2011 (has links)
A evolução do uso da energia eólica nas últimas décadas está diretamente relacionada ao de-senvolvimento da tecnologia empregada na conversão e projeto das instalações. Neste contex-to o presente trabalho apresenta um estudo sobre a influência de fatores atmosféricos, tais como a turbulência e a presença de um perfil de velocidades referentes à camada limite at-mosférica, no desenvolvimento da esteira aerodinâmica de uma turbina eólica dimensionada segundo a teoria de Betz. O estudo é realizado utilizando o método dos volumes finitos para a solução das equações de Navier-Stokes com Médias de Reynolds (RANS). O problema de fechamento é contornado com a modelagem da turbulência segundo o modelo SST. A análise é realizada empregando o programa ANSYS-CFX 12.0 com modelagem do escoamento em regime transiente e incompressível. O domínio, discretizado com volumes tetraédricos e pris-máticos, é dividido em uma região em que está inserido o rotor da turbina e outra equivalente ao túnel de vento utilizado no trabalho experimental de referência, com condição de interface conectando os volumes. A análise é focada no estudo da esteira distante do rotor com resulta-dos comparados aos experimentais existentes na literatura. O estudo é dividido em três casos com intensidades de turbulência na entrada do domínio equivalentes a 0,6%, 2% e 6 % res-pectivamente, utilizadas tanto nas simulações com perfil uniforme de velocidades quanto para aquela com perfil logarítmico de velocidades. Os resultados, apresentados de forma adimensi-onal para a velocidade em diferentes distâncias a jusante do rotor, são coerentes com resulta-dos experimentais de outros autores. As simulações realizadas demonstram a importância de considerarem-se os efeitos atmosféricos no dimensionamento de projetos de instalação de sistemas de conversão de energia eólica. / Advances in the study of numerical simulations of turbulent flows, coupled with the increase of computational power, has enabled computational solutions for more complex engineering problems. The evolution in the use of wind energy in recent decades is directly related to the development of technology involving the conversion and project of installations. In this con-text, this work shows a study on the influence of atmospheric factors like turbulence and the existence of a velocity profile related to the atmospheric boundary layer, in the development of the aerodynamic wake of a wind turbine projected following the Betz theory. The study is done using the method of finite volumes to solve the Reynolds Averaged Navier-Stokes equa-tions (RANS), the closure problem is outlined with the SST model. The analysis is done using ANSYS-CFX 12.0 software with modeling of transient and incompressible flow. The domain, discretized with tetrahedral and prismatic volumes, is divided into a region where the tur-bine’s rotor is placed and into another one equivalent to the wind tunnel used in experimental research, with an interface condition connecting both domains. The focus of the analysis is the study of the rotor’s downstream wake, comparing the results to experimental ones from exist-ing literature. The study is divided into three cases with different turbulence intensities in the domain inlet equivalent to 0.6%, 2% and 6% respectively, used both in the uniform velocity profile and in the logarithmic velocity profile simulations. Results, presented in non-dimensional form for the velocity at different downstream distances from the rotor, are con-sistent with the experimental results of other authors. Developed simulations show the impor-tance of considering atmospheric effects on sizing projects of wind energy conversion sys-tems.
54

Otimização e dinâmica dos fluidos computacional aplicadas a turbinas eólicas

Ribeiro, André Francesconi Pinto January 2012 (has links)
Este trabalho consiste na aplicação de métodos de otimização e de dinâmica dos fluidos computacional a turbinas eólicas. O grande crescimento no mercado de energias renováveis exige que turbinas cada vez mais potentes sejam criadas e que o projeto e análise destas seja cada vez mais preciso. A presente dissertação tem como objetivos a otimização um aerofólio para turbinas eólicas, a simulação de um aerofólio de uma turbina eólica com alto ângulo de ataque e a simulação de uma turbina tridimensional. A otimização de aerofólios foi feita com simulações bidimensionais permanentes, utilizando as equações médias de Reynolds e o modelo de turbulência de Spalart-Allmaras, com algoritmos genéticos acoplados a redes neurais artificiais. O cálculo de um aerofólio com alto ângulo de ataque foi feito utilizando simulações de grandes escalas com o modelo dinâmico de Smagorinsky. As simulações de uma turbina tridimensional foram feitas empregando as equações médias de Reynolds em forma permanente, com um termo adicional representando as forças de Coriolis, também com o modelo de turbulência de Spalart-Allmaras. Da primeira etapa pode-se concluir que as simulações bidimensionais permanentes são muito precisas para o aerofólio de referência, com boa concordância nos coeficientes de arrasto, sustentação e pressão. Os algoritmos genéticos geraram bons resultados, com cerca de 8% de aumento da razão sustentação/arrasto e com aproximadamente 50% de economia no tempo computacional ao se utilizar redes neurais artificiais. Na segunda etapa, o cálculo de um aerofólio com alto ângulo de ataque demonstrou necessidade de simulações tridimensionais transientes, pela alta variação dos coeficientes aerodinâmicos ao longo do tempo e alta tridimensionalidade da esteira. Na última etapa, a simulação de uma turbina tridimensional mostrou resultados muito próximos dos experimentais. Muita atenção foi dada na discretização deste caso, chegando a uma malha com 700 mil elementos, enquanto outros autores utilizaram de 3 a 38 milhões de elementos para o mesmo caso. / The present work consists in the application of optimization methods and computational fluid dynamics to wind turbines. The massive growth in renewable energies demands more powerful turbines and more accuracy in their design and analysis. This work has three objectives: optimization of an airfoil for wind turbines, simulation of a wind turbine airfoil in deep stall, and simulation of a three-dimensional wind turbine. The airfoil optimization is accomplished by means of two-dimensional steady-state Reynolds averaged Navier-Stokes simulations with the Spalart-Allmaras turbulence model, with genetic algorithms coupled with artificial neural networks. The airfoil in deep stall is calculated with unsteady three-dimensional Large Eddy Simulations with the dynamic Smagorinsky model. The simulation of a wind turbine is also done by means of the Reynolds averaged Navier-Stokes equations, with an additional term to take the Coriolis forces into account, and the Spalart-Allmaras turbulence model. In the first application, it can be confirmed that the two-dimensional steady state simulations are very accurate for the reference airfoil, with good agreement for drag, lift, and pressure coefficients. Genetic algorithms improved the lift-to-drag ratio about 8%, with a 50% decrease in computational time when using artificial neural networks. For the second application, the airfoil with a high angle of attack showed that transient three-dimensional simulations were indeed required, with a high variation of aerodynamic coefficient as a function of time and the highly three-dimensional wake. In the final part, the three-dimensional wind turbine showed very good agreement with experimental results. A great deal of attention was devoted to the creation of the grid and a mesh with only 700 thousand elements was achieved, while other authors used from 3 to 38 million elements for the same case.
55

Estudo comparativo experimental e numérico sobre o desempenho de turbinas savonius helicoidal e de duplo-estágio

Kothe, Leonardo Brito January 2016 (has links)
O presente trabalho apresenta um estudo numérico e experimental sobre o desempenho aerodinâmico de turbinas eólicas de eixo vertical envolvendo rotores Savonius convencional de duplo-estágio e helicoidal. O estudo experimental é realizado no Túnel Aerodinâmico Professor Debi Pada Sadhu, do Laboratório de Mecânica dos Fluidos da UFRGS. As simulações numéricas são realizadas com o software Fluent/ANSYS utilizando o Método dos Volumes Finitos. São comparados os coeficientes de torque estático e dinâmico, o coeficiente de potência, além de uma análise aerodinâmica das duas turbinas. As medições são realizadas empregando Tubos de Pitot, um torquímetro estático digital e um torquímetro simples construído para a medição do torque dinâmico. As turbinas são fabricadas através da técnica de prototipagem 3D, com uma semelhança de dimensões e parâmetros. As soluções numéricas são resolvidas através da equação da continuidade, das equações de Navier-Stokes com médias de Reynolds (RANS) e pelo modelo de turbulência k-ω SST. A qualidade da malha utilizada é avaliada através do método de Índice de Convergência de Malha (GCI), para três diferentes tamanhos de malha. São feitas análises dos rotores na forma estática para diferentes ângulos de incidência e com a turbina em rotação são feitas análises para diferentes razões de velocidades de ponta de pá (λ). Resultados demonstram que a turbina helicoidal apresenta um coeficiente de torque positivo para todos os ângulos do rotor, assim como a turbina convencional de dois estágios. O coeficiente de torque dinâmico da turbina helicoidal é superior ao da turbina de duplo-estágio para a maioria dos casos, e também apresenta menor oscilação de torque ao longo de cada rotação. Por consequência, o coeficiente de potência do rotor helicoidal também se tornou superior, com um valor máximo encontrado na ordem de 11,8% para um λ de 0,65 no caso experimental, e de 8,4% para o mesmo λ no caso numérico, quando comparado com o rotor de duplo-estágio. Os erros relativos entre as simulações numéricas e os resultados experimentais estão entre 2,16% e 13,4%. Uma estimativa de potência gerada é feita para ambos os casos, para uma razão de velocidade de ponta de 0,65, onde a turbina helicoidal apresenta melhores resultados em relação ao rotor de duplo-estágio, na ordem de 13,6% para uma velocidade de 10,4 m/s. / This paper presents a numerical and experimental study of vertical axis wind turbine performance comparison involving two-stage and helical Savonius rotors. The experimental study is conducted in the Aerodynamic Tunnel Professor Debi Pada Sadhu at the Fluid Mechanics Laboratory of the UFRGS. The numerical simulations are performed with the Fluent/ANSYS software using the Finite Volumes Method. The static and dynamic torque coefficients, the power coefficients, and an aerodynamic analysis of the two turbines are compared. Measurements are made using Pitot tubes, a digital static torque wrench and a simple wrench constructed for the dynamic torque measurement. The aerodynamics rotors are manufactured by 3D prototyping technique with similar dimensions and parameters. Numerical solutions are solved by the continuity equation, the Reynolds Averaged Navier-Stokes (RANS) equations and the turbulence model k-ω SST. The quality of the mesh used is evaluated used the Grid Convergence Index (GCI) method, for three different mesh sizes. The rotors analyzes are made in static form for different angles of incidence and for the rotating turbine analyzes are made for differents tip speed ratio (λ). Results show that the helical turbine has a positive static torque coefficient for any rotor angles, as well as conventional two-stage turbine. The dynamic torque coefficient of the helical turbine is higher than the two-stage turbine for most cases and also shows less torque variation along each rotation. Consequently, the power coefficient of the helical rotor also become higher, with a maximum value found on the order of 11.8% for a λ of 0.65 in the experimental case, and 8.4% for the same λ number when compared with the two-stage rotor. The relative errors between the numerical simulations and the experimental results are between 2.16% and 13.4%. A generated power estimate is made for both cases, for a tip speed ratio of 0.65, where the helical turbine provides better results compared to two-stage rotor in order of 13.6% for a velocity of 10.4 m/s.
56

Design de difusor aerodinâmico compacto para uma turbina eólica de pequena escala

Ximenes, Fernando Silveira January 2018 (has links)
Este trabalho tem como proposta desenvolver um difusor aerodinâmico compacto para uma turbina eólica de pequena escala, objetivando alcançar um melhor start rotacional (menor torque de partida para rotacionar) em baixas velocidades de vento. Um difusor é uma estrutura em forma de aro envolta ao rotor da turbina eólica, sua função é amplificar a captação e aceleração do vento, explorando os efeitos aerodinâmicos das zonas de vórtices de baixa pressão na saída do difusor. O estudo concentrar-se-á na manipulação da geometria dos difusores, analisando como seu design impacta no seu comportamento aerodinâmico impacta na capacidade do difusor equacionar as zonas de alta e baixa pressão ao longo de sua estrutura, essa relação é determinante para o efeito aerodinâmico que acelera o escoamento de ar, resultando em um start rotacional em baixas velocidade de vento. O ponto de partida para este trabalho são os estudos desenvolvidos por Ohya et al. (2010) sobre difusores compactos-flangeados (compact-type brimmed diffuser) para turbinas eólicas, denominado Wind-lens Technology. Para alcançar os objetivos, esta pesquisa vai utilizar simulações por CFD com software de túnel de vento virtual e ensaios experimentais em túnel de vento físico para avaliar o comportamento dinâmico (turbina + difusor). Foram desenvolvidas dezenove geometrias a partir de uma área construtiva padronizada para o design de difusores. Desenvolveu-se também, a partir dos resultados encontrados, um MFI (microseparador de fluxo interno), que consiste em uma estrutura adicional com função de potencializar as zonas de vórtices (baixa pressão) no plano de saída do escoamento de ar dos difusores. Os resultados mostraram que a manipulação da geometria do difusor produziu resultados promissores em comparação com o modelo de referência, alcançando em algumas geometrias de difusores um melhor start rotacional. O MFI mostrou-se eficaz para potencializar as zonas de baixa pressão e melhorou o start rotacional. Ao final, definiu-se dois modelos de difusores e suas respectivas versões com MFI como as melhores opções para o start rotacional. / This work aims to develop a compact wind turbine for a turbine and a small scale, aiming at a better rotational start at low wind speeds (lower starting torque to rotate). A diffuser is a rim-shaped structure wrapped around the wind turbine rotor, its function is to amplify the wind uptake and acceleration, exploiting the aerodynamic effects of the low-pressure vortex zones at the diffuser outlet. The study will focus on the manipulation of the diffuser geometry, analyzing how its design impacts on its aerodynamic behavior, especially on the diffuser's ability to equate the high and low pressure zones along its structure, this relation is decisive for the aerodynamic effect that accelerates the air flow, resulting in a rotational start at low wind speeds. The basis for this work are studies developed by Ohya et al. (2010) on compact-flanged diffusers for wind turbines, called Wind-lens Technology. To achieve the objectives, this research will use CFD simulations with virtual wind tunnel software and experimental tests in physical wind tunnel to evaluate the dynamic behavior (turbine + diffuser). Nineteen geometries were developed from a standardized design area for the design of diffusers. An MFI (internal flow microseparator) has also been developed, which is an additional structure whose function is to potentiate the low pressure zones of the diffusers. The results showed that the manipulation of the diffuser geometry produced promising results in comparison to the reference model, reaching in some conditions superior results in RPM and initial start. The MFI proved to be effective in boosting the low pressure zones and improved the initial start. At the end, two models of diffusers and their respective versions with MFI were defined as the best options for the initial start.
57

Metodologia de projeto de turbinas eólicas de pequeno porte. / Methodology for small wind turbines design.

Eden Rodrigues Nunes Junior 10 March 2008 (has links)
O potencial eólico do Brasil, de vento firme e com viabilidade econômica de aproveitamento, é de 143 GW. Isso equivale ao dobro de toda a capacidade da geração já instalada no país. No Brasil, a energia eólica tem uma sazonalidade complementar à energia hidrelétrica, porque os períodos de melhor condição de vento coincidem com os de menor capacidade dos reservatórios. O projeto desenvolvido neste trabalho nasceu de uma chamada pública do FINEP, e sob os auspícios do recém criado CEPER. Ao projeto foi incorporado um caráter investigativo, de contribuição científica original, resultando em um produto de tecnologia inovadora para aerogeradores de baixa potência. Dentre os objetivos do projeto, destacamos a avaliação experimental de turbinas eólicas de 5000 W de potência. Mais especificamente, dentro do objetivo geral deste projeto estão incluídas análise estrutural, análise aerodinâmica e análise de viabilidade de novos materiais a serem empregados. Para cada uma das diferentes áreas de conhecimento que compõem o projeto, será adotada a metodologia mais adequada. Para a Análise aerodinâmica foi realizada uma simulação numérica preliminar seguida de ensaios experimentais em túnel de vento. A descrição dos procedimentos adotados é apresentada no Capítulo 3. O Capítulo 4 é dedicado aos testes elétricos. Nesta etapa, foi desenvolvido um banco de testes para obtenção das características específicas das máquinas-base, como curvas de potência, rendimento elétrico, análise e perdas mecânicas e elétricas, e aquecimento. Este capítulo termina com a análise crítica dos valores obtidos. Foram realizados testes de campo de todo o conjunto montado. Atualmente, o aerogerador de 5kW encontra-se em operação, instrumentado e equipado com sistema de aquisição de dados para consolidação dos testes de confiabilidade. Os testes de campo estão ocorrendo na cidade de Campos, RJ, e abrangeram as seguintes dimensões de análise; testes de eficiência para determinação da curva de potência, níveis de ruído e atuação de dispositivos de segurança. Os resultados esperados pelo projeto foram atingidos, consolidando o projeto de um aerogerador de 5000W. / Initial estimates of the potential contribution of wind power in Brazil for selected areas are approximately of 143GW. This figure represents two times the total power already installed. In Brazil, wind power relates to hydroelectrical power in such way that when wind speeds are high and stable, reservoirs experiences low capacity in water volume. The project herein presented has its origins on the approval of sponsorship from FINEP, a governmental agency that provided grant to develop a 5kW windmill over a period of 30 months. Among the objectives of this project are the development of a new technology to be applied to windmills, by means of technological innovation. More specially, the main proposal was to evaluate wind turbines behavior numerically and experimentally, including its implementation in wind towers to generate 5kW.This is accomplished in detail x out performance of analysis of structural characteristics, aerodynamic, performance e viability on the use of new materials were performed. To this end, we shall defie a specific methodology to each area of knowledge. Aerodynamic analysis was performed by means of initial numerical simulation followed by experimental tests in wind tunnel. A detailed description of the experimental set up and procedures is provided in chapter 3. Chapter 4 deals with electrical parts of the project. At this point an apparatus was specifically designed and built in order to acquire relevant parameters, which describe the electrical generator, provided we can predict on some measure the electrical energy performance under three diferent operating conditions, namely, without load, loaded and charging batteries. A detailed description of 5kW prototype manufactured is presented along with an analysis of the results are presented at the end of this chapter. Finally, the whole set was completed and were performed. The complete Truck-test set of the windmill is composed by tower, generator, turbines, controlling system and safety system. Results obtained are in agreement with the expected. At this moment, the 5kW windmill finds itself in operation. The windmill is instrumented and equipped with an data acquisition system to consolidate reliability tests, which provide eficiency tests, noise determination and safety devices test performance. This set of data will confirm the global performance and consolidate the 5kW windmill.
58

Análise numérica da influência de fatores atmosféricos na esteira aerodinâmica de turbinas eólicas

Ludwig, Daniel Evandro January 2011 (has links)
A evolução do uso da energia eólica nas últimas décadas está diretamente relacionada ao de-senvolvimento da tecnologia empregada na conversão e projeto das instalações. Neste contex-to o presente trabalho apresenta um estudo sobre a influência de fatores atmosféricos, tais como a turbulência e a presença de um perfil de velocidades referentes à camada limite at-mosférica, no desenvolvimento da esteira aerodinâmica de uma turbina eólica dimensionada segundo a teoria de Betz. O estudo é realizado utilizando o método dos volumes finitos para a solução das equações de Navier-Stokes com Médias de Reynolds (RANS). O problema de fechamento é contornado com a modelagem da turbulência segundo o modelo SST. A análise é realizada empregando o programa ANSYS-CFX 12.0 com modelagem do escoamento em regime transiente e incompressível. O domínio, discretizado com volumes tetraédricos e pris-máticos, é dividido em uma região em que está inserido o rotor da turbina e outra equivalente ao túnel de vento utilizado no trabalho experimental de referência, com condição de interface conectando os volumes. A análise é focada no estudo da esteira distante do rotor com resulta-dos comparados aos experimentais existentes na literatura. O estudo é dividido em três casos com intensidades de turbulência na entrada do domínio equivalentes a 0,6%, 2% e 6 % res-pectivamente, utilizadas tanto nas simulações com perfil uniforme de velocidades quanto para aquela com perfil logarítmico de velocidades. Os resultados, apresentados de forma adimensi-onal para a velocidade em diferentes distâncias a jusante do rotor, são coerentes com resulta-dos experimentais de outros autores. As simulações realizadas demonstram a importância de considerarem-se os efeitos atmosféricos no dimensionamento de projetos de instalação de sistemas de conversão de energia eólica. / Advances in the study of numerical simulations of turbulent flows, coupled with the increase of computational power, has enabled computational solutions for more complex engineering problems. The evolution in the use of wind energy in recent decades is directly related to the development of technology involving the conversion and project of installations. In this con-text, this work shows a study on the influence of atmospheric factors like turbulence and the existence of a velocity profile related to the atmospheric boundary layer, in the development of the aerodynamic wake of a wind turbine projected following the Betz theory. The study is done using the method of finite volumes to solve the Reynolds Averaged Navier-Stokes equa-tions (RANS), the closure problem is outlined with the SST model. The analysis is done using ANSYS-CFX 12.0 software with modeling of transient and incompressible flow. The domain, discretized with tetrahedral and prismatic volumes, is divided into a region where the tur-bine’s rotor is placed and into another one equivalent to the wind tunnel used in experimental research, with an interface condition connecting both domains. The focus of the analysis is the study of the rotor’s downstream wake, comparing the results to experimental ones from exist-ing literature. The study is divided into three cases with different turbulence intensities in the domain inlet equivalent to 0.6%, 2% and 6% respectively, used both in the uniform velocity profile and in the logarithmic velocity profile simulations. Results, presented in non-dimensional form for the velocity at different downstream distances from the rotor, are con-sistent with the experimental results of other authors. Developed simulations show the impor-tance of considering atmospheric effects on sizing projects of wind energy conversion sys-tems.
59

Controle semiativo de modelo de pêndulo invertido para aerogeradores offshore

Guimarães, Pedro Varella Barca 26 February 2016 (has links)
Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Faculdade de Tecnologia, Programa de Pós-Graduação em Integridade de Materiais da Engenharia, 2016. / Submitted by Camila Duarte (camiladias@bce.unb.br) on 2016-07-25T14:53:58Z No. of bitstreams: 1 2016_PedroVarellaBarcaGuimarães.pdf: 2937578 bytes, checksum: d2be3d5744f7454bf1085bf060a78fe6 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-08-23T18:59:07Z (GMT) No. of bitstreams: 1 2016_PedroVarellaBarcaGuimarães.pdf: 2937578 bytes, checksum: d2be3d5744f7454bf1085bf060a78fe6 (MD5) / Made available in DSpace on 2016-08-23T18:59:07Z (GMT). No. of bitstreams: 1 2016_PedroVarellaBarcaGuimarães.pdf: 2937578 bytes, checksum: d2be3d5744f7454bf1085bf060a78fe6 (MD5) / Juntamente com a necessidade de energia renovável do mundo, a energia eólica está crescendo em rápido desenvolvimento e implementação. O projeto, construção e manutenção dos chamados parques eólicos ainda apresentam muitos desafios para os engenheiros e pesquisadores. Avanços nessa área estão resultando em turbinas eólicas cada vez mais altas e esbeltas, intensificando as vibrações nas estruturas causadas tanto pelo seu próprio funcionamento quanto pela força do vento. Neste contexto, as turbinas eólicas vêm sendo instaladas no oceano próximas à costa trazendo assim, além de outras vantagens, os benefícios de ventos mais fortes e consistentes com menos turbulência nessas regiões. Dentre os diversos tipos de turbinas eólicas offshore, encontra-se a turbina flutuante. Este tipo de estrutura pode ser vulnerável às vibrações excessivas causadas pelos carregamentos do vento e das ondas. Analisando este sistema estrutural como um modelo discreto de pêndulo invertido, é possível projetar um amortecedor de massa sintonizado (AMS), também como um pêndulo invertido, para controlar e minimizar as amplitudes de vibração do sistema. A frequência do AMS anexado à estrutura principal é sintonizada a uma frequência particular visando fazer o AMS vibrar fora de fase com a estrutura principal, transferindo assim a energia do sistema para o amortecedor. Entretanto, dispositivos passivos apenas são efetivos dentro de uma pequena faixa de frequência considerada no projeto, e as forças do vento são excitações aleatórias com ampla faixa de frequência. Neste sentido, uma melhor abordagem é de se projetar um dispositivo semiativo. O controle semiativo combina a confiança e simplicidade típica de sistemas passivos com a adaptabilidade do controle ativo. É caracterizado por não adicionar energia externa à estrutura principal e possuir propriedades capazes de serem alteradas dinamicamente. Estes dispositivos podem ser vistos como dispositivos passivos controláveis porque, apesar de alterar as propriedades de amortecimento e/ou rigidez, ele atua na estrutura de forma passiva. Neste estudo, os parâmetros de um AMS passivo são projetados por meio de três estratégias distintas: estudo paramétrico, método de gradiente e algoritmo genético. Em seguida, é analisado o efeito das pás na resposta dinâmica do sistema. Por último, são propostas duas estratégias para o funcionamento de um AMS semiativo: dispositivo ON/OFF e variação contínua. Os dois sistemas semiativos são analisados numericamente. Verifica-se que ambos os sistemas passivo e semiativo são eficientes no controle da resposta dinâmica do sistema, sendo que o semiativo se mostra eficiente para uma faixa de frequência mais ampla. _________________________________________________________________________________________________ ABSTRACT / Along with the world’s need of renewable energy, wind energy is growing in fast development and implementation. The project, building and maintenance of the so called wind farm still present lots of challenges for engineers and researches. Advances in this area are resulting in increasingly high and slender wind turbines, intensifying vibrations in structures caused by its own operation and, also, by wind force. In this context, wind turbines took place on the ocean next to coast which, besides other advantages, benefit from more intense and consistent wind with less turbulence in these regions. Among these offshore wind turbines is the floating one. This type of structure can be vulnerable to excessive vibration caused by wind and wave loads. Analyzing this structural system as a discrete model of an inverted pendulum, it’s possible to design a Tuned Mass Damper (TMD), also as an inverted pendulum, to control and minimize the system vibration. The frequency of the TMD attached to the main structure is tuned to a particular frequency aiming to make the TMD vibrate out of phase with the main system, thus transferring the energy system to the damper. However, passive devices only work properly for the designed frequency range, and the considered forces are a random type of excitations. In this sense, a better approach would be design a semi-active device. Semi-active control joins confidence and simplicity typical of passive systems with active control adaptability. It is characterized by not adding external energy to the structure and to have properties that can change dynamically. These devices can be viewed as controllable passive devices because, despite of its changing properties of damping and/or stiffness, it action on the structure is passive. In this study, the TMD’s parameters are designed by three different strategies: parametric study, gradient method and genetic algorithm. Following, it’s analyzed the effect of blade’s consideration in system’s dynamic response. At last, two strategies are proposed for the semi-active device functioning: ON/OFF device and continuum variation. Both semi-active systems are analyzed numerically. It’s verified that both passive and semi-active systems are efficient in controlling the system’s dynamic response, whereas the semi-active is efficient in a wider frequency range.
60

Metodologia de projeto de turbinas eólicas de pequeno porte. / Methodology for small wind turbines design.

Eden Rodrigues Nunes Junior 10 March 2008 (has links)
O potencial eólico do Brasil, de vento firme e com viabilidade econômica de aproveitamento, é de 143 GW. Isso equivale ao dobro de toda a capacidade da geração já instalada no país. No Brasil, a energia eólica tem uma sazonalidade complementar à energia hidrelétrica, porque os períodos de melhor condição de vento coincidem com os de menor capacidade dos reservatórios. O projeto desenvolvido neste trabalho nasceu de uma chamada pública do FINEP, e sob os auspícios do recém criado CEPER. Ao projeto foi incorporado um caráter investigativo, de contribuição científica original, resultando em um produto de tecnologia inovadora para aerogeradores de baixa potência. Dentre os objetivos do projeto, destacamos a avaliação experimental de turbinas eólicas de 5000 W de potência. Mais especificamente, dentro do objetivo geral deste projeto estão incluídas análise estrutural, análise aerodinâmica e análise de viabilidade de novos materiais a serem empregados. Para cada uma das diferentes áreas de conhecimento que compõem o projeto, será adotada a metodologia mais adequada. Para a Análise aerodinâmica foi realizada uma simulação numérica preliminar seguida de ensaios experimentais em túnel de vento. A descrição dos procedimentos adotados é apresentada no Capítulo 3. O Capítulo 4 é dedicado aos testes elétricos. Nesta etapa, foi desenvolvido um banco de testes para obtenção das características específicas das máquinas-base, como curvas de potência, rendimento elétrico, análise e perdas mecânicas e elétricas, e aquecimento. Este capítulo termina com a análise crítica dos valores obtidos. Foram realizados testes de campo de todo o conjunto montado. Atualmente, o aerogerador de 5kW encontra-se em operação, instrumentado e equipado com sistema de aquisição de dados para consolidação dos testes de confiabilidade. Os testes de campo estão ocorrendo na cidade de Campos, RJ, e abrangeram as seguintes dimensões de análise; testes de eficiência para determinação da curva de potência, níveis de ruído e atuação de dispositivos de segurança. Os resultados esperados pelo projeto foram atingidos, consolidando o projeto de um aerogerador de 5000W. / Initial estimates of the potential contribution of wind power in Brazil for selected areas are approximately of 143GW. This figure represents two times the total power already installed. In Brazil, wind power relates to hydroelectrical power in such way that when wind speeds are high and stable, reservoirs experiences low capacity in water volume. The project herein presented has its origins on the approval of sponsorship from FINEP, a governmental agency that provided grant to develop a 5kW windmill over a period of 30 months. Among the objectives of this project are the development of a new technology to be applied to windmills, by means of technological innovation. More specially, the main proposal was to evaluate wind turbines behavior numerically and experimentally, including its implementation in wind towers to generate 5kW.This is accomplished in detail x out performance of analysis of structural characteristics, aerodynamic, performance e viability on the use of new materials were performed. To this end, we shall defie a specific methodology to each area of knowledge. Aerodynamic analysis was performed by means of initial numerical simulation followed by experimental tests in wind tunnel. A detailed description of the experimental set up and procedures is provided in chapter 3. Chapter 4 deals with electrical parts of the project. At this point an apparatus was specifically designed and built in order to acquire relevant parameters, which describe the electrical generator, provided we can predict on some measure the electrical energy performance under three diferent operating conditions, namely, without load, loaded and charging batteries. A detailed description of 5kW prototype manufactured is presented along with an analysis of the results are presented at the end of this chapter. Finally, the whole set was completed and were performed. The complete Truck-test set of the windmill is composed by tower, generator, turbines, controlling system and safety system. Results obtained are in agreement with the expected. At this moment, the 5kW windmill finds itself in operation. The windmill is instrumented and equipped with an data acquisition system to consolidate reliability tests, which provide eficiency tests, noise determination and safety devices test performance. This set of data will confirm the global performance and consolidate the 5kW windmill.

Page generated in 0.0969 seconds