• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiphysics coupled simulations of gas turbines / Simulations multiphysiques couplées de turbines à gaz

Segui Troth, Luis Miguel 14 November 2017 (has links)
La résolution d’équations différentielles de divers degrés de complexité est nécessaire afin de simuler tous les phénomènes présents dans les écoulements complexes de turbomachine et en particulier les effets hors équilibre qui peuvent y jouer un rôle prépondérant. Aujourd’hui, seule l’approche LES (Large Eddy Simulation) sous forme totalement compressible permet d’obtenir avec une précision satisfaisante la physique associée aux écoulements réactifs et turbulents en géométrie complexe. Le travail porte sur la modélisation numérique et physique des échanges thermiques en proche paroi. Ce travail de thèse s'est appuyé sur le projet Européen COPA-GT dédié à la simulation numérique et multi-physique d'un moteur complet. / The resolution of differential equations of diverse degree of complexity is necessary to simulate the phenomena present in the complex turbomachinery flows and in particular, requires accounting for unsteady effects that may have a preponderant role. Today, only the LES (Large Eddy Simulation) fully compressible approach has the required accuracy to predict the physics associated to reactive and turbulent flows in such complex geometries. This work covers the numerical modelling of physics in the near-wall region of a high-pressure turbine blade with special focus on thermal predictions. This work was supported by the European project COPA-GT, dedicated to the numerical multi-physics simulation of a complete gas turbine.
2

Analyse instationnaire aérothermique d'un étage de turbine avec transport de points chauds

Wlassow, Fabien 07 May 2012 (has links) (PDF)
Afin d'augmenter le rendement et la puissance spécifique des turbines à gaz, la température en entrée de la turbine haute pression a été continuellement augmentée, au point d'atteindre une valeur de l'ordre de la température de fusion des matériaux. La capacité à prédire l'écoulement (température en particulier) dans la turbine est donc un élément essentiel pour la conception des turbines à gaz, particulièrement pour celle qui ne sont pas refroidies. Toutefois, cette tâche est rendue difficile par l'extrême complexité de l'environnement dans lequel la turbine évolue (interaction avec la chambre de combustion, effets technologiques, couplage thermique fluide / solide, etc.).L'objectif de ce travail de thèse est de proposer, d'une part une stratégie de simulation numérique afin de prédire au mieux les champs aérothermiques dans une turbine haute-pression, d'autre part une méthode d'analyse permettant de quantifier l'impact des différents éléments de l'environnement sur les performances. Pour répondre à ces objectifs, des simulations instationnaires d'un étage de turbine ont été réalisées avec le code elsA, prenant en compte les effets technologiques (baignoire, refroidissement externe grâce aux évents du distributeur et aux cavités moyeu et carter du rotor qui sont alimentés par le système d'air secondaire, congés de raccordement) et les transferts thermiques conjugués. Une analyse de la production locale d'entropie a aussi été menée afin de comparer les performances aérodynamiques pour plusieurs niveaux d'approximations dans la définition de la turbine (prise en compte ou non de tel ou tel effet technologique) et de localiser l'origine de ces différences. L'analyse des résultats a montré que la hauteur de jeu et le système de refroidissement externe ont l'impact le plus significatif sur les performances aérodynamiques de la turbine. La température de paroi de la pale de rotor est de son côté fortement influencée par l'écoulement issu de la chambre de combustion, le refroidissement externe et le couplage thermique fluide / solide. Ce travail est un premier pas vers la réalisation de simulations totalement intégrées qui doivent permettre d'améliorer la précision des conceptions.
3

Modélisation et analyse de l'interaction turbine HP-Anneau de roue / Modeling and Analysis of the High Pressure Turbine-Rotor Shroud Interactions

Tang, Etienne 13 December 2016 (has links)
L’influence de certains effets technologiques sur les performances d’une turbine n’est pas encore bien comprise. En particulier, des essais ont été réalisés par Safran Helicopter Engines sur un étage de turbine haute pression dont l’anneau de roue forme une cavité reliée à la veine au niveau de l’espace inter-grilles, dans laquelle est injecté de l’air de refroidissement. Ils ont montré une sensibilité inattendue des performances à certains paramètres géométriques. Cette thèse a pour but d’expliquer ce comportement, et d’améliorer la compréhension et la prédiction par simulation numérique de l’effet d’une telle cavité sur l’aérodynamique et l’aérothermique de la turbine. Cette problématique a été traitée à l’aide de simulations numériques RANS instationnaires, réalisées avec le code elsA. Dans un premier temps, seule une partie de la cavité a été simulée, ce qui la ramène à une simple injection d’air de refroidissement dans la veine par une fente axisymétrique. Ces calculs ont montré que l’écoulement dans la veine est profondément modifié par l’air de refroidissement. Entre autres, le tourbillon de passage au carter et l’écoulement de jeu dans le rotor sont impactés, et deviennent fortement instationnaires. Les mécanismes d’interaction entrant en jeu sont détaillés, et l’effet sur les pertes est discuté. Des calculs prenant en compte la cavité entière ont ensuite été mis en place, d’abord avec un écoulement dans la veine simplifié, puis avec l’étage de turbine complet. Ils ont permis d’identifier une structure composée de poches de gaz de veine ingéré dans la cavité et de zones d’éjection d’air de refroidissement, tournant à une vitesse inférieure à celle du rotor, et manifestement générée par une instabilité. Des structures semblables avaient déjà été identifiées dans des turbines par de nombreuses études concernant des cavités inter-disques au moyeu, mais c’est ici la première fois qu’un tel comportement est obtenu dans une cavité composée de parois fixes et débouchant au carter. L’effet de cette structure sur l’écoulement dans la veine est qualitativement identique à celui obtenu par les simulations avec seulement une partie de la cavité, mais l’intensité et la fréquence des phénomènes d’interaction entre l’air de refroidissement injecté et l’écoulement principal sont modifiés par la rotation de la structure dans la cavité. Finalement, bien que les résultats d’essai n’ont pas pu être entièrement expliqués, ces travaux ont permis d’améliorer la compréhension des phénomènes se produisant dans une telle configuration, d’identifier les défis qu’ils posent aux simulations numériques, et d’ouvrir de nouvelles pistes de recherche. / The impact of some technological effects on the performances of a turbine are not yet well understood. More specifically, tests were performed by Safran Helicopter Engines on a high pressure turbine stage featuring a cavity over the rotor shroud, connected to the main gas path in the inter-rows space. Cooling air is injected in this cavity. This experimental campaign has shown an unexpected sensitivity of the turbine performances to some geometric parameters. This thesis aims at explaining this behaviour, and at improving the understanding and the prediction through numerical simulations of the effect of such a cavity on the aerodynamic and aerothermic behaviour of the turbine. Unsteady RANS numerical simulations have been performed with the elsA code. First, simulations were set up with a small part of the cavity, which forms a simple axisymmetric slot injecting cooling air into the main gas path. These computations have shown that the flow through the stage is deeply modified by the injected cooling air. The rotor shroud passage vortex and the tip leakage flow are affected and undergo large fluctuations. The interaction mechanisms are detailed and the effect on loss generation is discussed. Then, computations modeling the full cavity were performed, beginning with a simplified annulus flow and next with the full turbine stage. They identified a flow structure made of hot annulus gas pockets ingested in the cavity and cooling air ejection zones. This structure rotates at a lower speed than the rotor, and is clearly generated by an aerodynamic instability. Similar structures had already been found in turbines by numerous studies on inter-disks cavities at the hub, but it is the first time that such a behaviour is reported in a cavity with fixed walls and located at the shroud. The effect of this structure on the flow through the annulus is qualitatively identical to that simulated with only a small part of the cavity, but the intensity and the frequency of the interaction phenomena between the cooling air and the main flow are modified because of the rotation of the cavity flow structure. Finally, even if the simulations did not manage to fully explain the experimental results, this work contributed to the improvement of the understanding of the phenomena occuring in such a configuraiton. It also identified some challenges for the modelling of these flows by numerical simulations, as well as some topics for future research.
4

Analyse instationnaire aérothermique d'un étage de turbine avec transport de points chauds / application à la maîtrise des performances des aubages

Wlassow, Fabien 07 May 2012 (has links)
Afin d’augmenter le rendement et la puissance spécifique des turbines à gaz, la température en entrée de la turbine haute pression a été continuellement augmentée, au point d’atteindre une valeur de l’ordre de la température de fusion des matériaux. La capacité à prédire l’écoulement (température en particulier) dans la turbine est donc un élément essentiel pour la conception des turbines à gaz, particulièrement pour celle qui ne sont pas refroidies. Toutefois, cette tâche est rendue difficile par l’extrême complexité de l’environnement dans lequel la turbine évolue (interaction avec la chambre de combustion, effets technologiques, couplage thermique fluide / solide, etc.).L’objectif de ce travail de thèse est de proposer, d’une part une stratégie de simulation numérique afin de prédire au mieux les champs aérothermiques dans une turbine haute-pression, d’autre part une méthode d’analyse permettant de quantifier l’impact des différents éléments de l’environnement sur les performances. Pour répondre à ces objectifs, des simulations instationnaires d’un étage de turbine ont été réalisées avec le code elsA, prenant en compte les effets technologiques (baignoire, refroidissement externe grâce aux évents du distributeur et aux cavités moyeu et carter du rotor qui sont alimentés par le système d’air secondaire, congés de raccordement) et les transferts thermiques conjugués. Une analyse de la production locale d’entropie a aussi été menée afin de comparer les performances aérodynamiques pour plusieurs niveaux d’approximations dans la définition de la turbine (prise en compte ou non de tel ou tel effet technologique) et de localiser l’origine de ces différences. L’analyse des résultats a montré que la hauteur de jeu et le système de refroidissement externe ont l’impact le plus significatif sur les performances aérodynamiques de la turbine. La température de paroi de la pale de rotor est de son côté fortement influencée par l’écoulement issu de la chambre de combustion, le refroidissement externe et le couplage thermique fluide / solide. Ce travail est un premier pas vers la réalisation de simulations totalement intégrées qui doivent permettre d’améliorer la précision des conceptions. / In order to increase the thermodynamic efficiency of gas turbine engines, the high-pressure turbine inlet temperature has been continually increased up to reach levels of the order of magnitude of the vanes and blades melting temperatures. The ability of predicting the flow through the turbine(especially the temperature) is a key point for the design of gas turbines, especially for the uncooled ones. However, this is challenging because of the complex environment that interacts with the turbine(hot-streak migration, technological details, fluid/solid thermal coupling . . .).The aim of this work is to develop a strategy based on CFD in order to predict aerothermal fields in a high-pressure turbine as well as an analysis allowing to quantify the impact of the environment on the turbine performances. To achieve these goals, the elsA code has been used to perform unsteady simulation of a turbine stage, taking into account technological details (squealer tip, external cooling thanks to vane trailing edge cooling and rotor hub and shroud cooling cavities, fillets) and conjugate heat transfers. An analysis of the local entropy production rate was also used to compare the performances resulting from different modeling of the turbine (taking into account or not one particular technological detail) and to localize the origin of these discrepancies. The results show that the tip height and the external cooling have the greatest impact on the turbine performances. The rotor blade temperature is mainly affected by the flow coming from the combustion chamber, the external cooling and the fluid / solid thermal coupling. This work is the first step towards the realization of integrated simulations allowing to improve the accuracy of design.
5

Etude expérimentale du comportement sous chargement de fretting simple à haute température de superalliages à base nickel MC2 et CMSX-4. : Application aux aubes de turbine pour moteur d'hélicoptère / Experimental study of the damage response of MC2 and CMSX-4 superalloys subjected to fretting loading at high temperature : Application to turbine blades of helicopter englnes

Sassy, Odin 15 May 2017 (has links)
Ce travail porte sur l'étude du comportement sous sollicitation de fretting sirnple à haute température de superalliages monocristallins à base de nickel MC2 et CMSX-4. Il trouve son application dans le domaine aéronautique, plus précisément au niveau de la turbine haute pression des moteurs d'hélicoptère. Celle-ci a pour fonction de convertir l'énergie cinétique des gaz brûlés en un couple qui entraîne en rotation le compresseur. Elle participe ainsi directement à l'entretien du cycle de combustion du moteur ce qui fait d'elle un organe clé. Située directement en aval de la chambre de combustion, la turbine haute pression (HP) est composée d'un disque central polycristallin et d'aubages monocristallins rapportés, liés au disque par une liaison dite pied de sapin. La rotation de la turbine et la température élevée des gaz de combustion va générer sur les aubes, le disque et l'attache qui les relie,des sollicitations thermomécaniques importantes. Du fait de la force centrifuge et du défilement des aubes devant les étages fixes des distributeurs, l'attache pied de sapin est la cible d 'oscillations dynamiques à l'origine de phénomènes d'endommagement par fretting. Ce fretting,, l'interface de contact entre l'aube et le disque fait l'objet d'une attention toute particulière,ce qui a motivé la conduite de ces travaux. Après une première phase et développement et de validation d'un banc d'essai innovant qui a nécessité la mise en place d'un dispositif de chauffage par induction, un soin tout particulier est apporté à la préparation des échantillons. La nature monocristalline du matériau constitutif des aubes nécessite en effet de respecter précisément l'orientation de la microstructure par rapport aux axes de sollicitation et la surface de contact. Pour cela une mesure systématique de la désorientation des axes primaires et secondaires des barreaux bruts est réalisée. La désorientation relevée est ensuite compensée au cas par cas lors du prélèvement par électroérosion des échantillons. Le lot d'échantillons obtenu peut dès lors être considéré comme homogène en terme d'orientation, malgré le fait que les barreaux bruts présentent des désorientations différentes. [...] / The aim of this work is to study the behavior of MC2 and CMSX-4 nickel based superalloys when subjected to fretting load at high temperature. Since it drives the compressor shaft, the high pressure turbine is a key part of the helicopter engine. 1n order to increase the global reliability and efficiency of the engine, single crystal nickel based superalloys are employed for turbine blades while disk parts are made of polycrystalline materials. Each turbine blade is attached to the central disk via a special link called fir tree root. Due to high temperature and dynamic oscillations, the contact zone between blades and disk is subjected to high thermomechanical stresses. 1t causes fretting phenomena that can lead to wear and cracking damage. This work focuses on both the partial slip and gross slip regime in order to study the damage process of single crystal MC2 and CMSX-4 materials. To perform the mechanical tests, an innovative fretting device is designed to fit the specifications. The use of an induction heat system allows an accurate control of high temperatures. To be consistent with the real flying parts,,the specific orientation of the microstructure of the material with respect to the contact loading direction is taken into account. The microstructure misalignement of raw material bars is measured and compensated as the specimens are machined for extraction. Consequently the obtained set of samples is considered to be of homogeneous microstructure orientation even if their source material contains deviations in orientation. Four material states are investigated: precision grinding conventional shot-peening ultrasonic shot-peening and nitriding process. The results show that for the partial slip régime, shot peening processes are very useful for turbine blade applications. As a matter of fact, the risk for crack nucleation and extension are reduced by the introduction of residual stresses beneath the surface in spite of the high temperature. 1nvestigating the gross slip regime results show that wear of material leads to the formation of a third body and then to the formation of a thin layer called "glaze layer)) with low friction coefficient. To describe the formation process of the "glaze layer)) halted trials are performed. The results allow the drafting of a scenario in which wear debris are stuck and sintered beneath the contact.

Page generated in 0.1157 seconds