Spelling suggestions: "subject:"turbines hydraulique."" "subject:"turbines hydraulic.""
21 |
Étude expérimentale de l'écoulement en entrée d'aspirateur d'une turbine bulbeVuillemard, Julien 29 June 2024 (has links)
Ce mémoire présente l’étude expérimentale de l’écoulement d’entrée d’un aspirateur d’une turbine bulbe présentant une chute abrupte de performance. Des mesures par vélocimétrie laser à effet Doppler (LDV) ont été réalisées sur deux axes soit en aval des pales de la roue et en aval du moyeu de la roue. Une particularité de cette étude est la conception d’un montage permettant de mesurer la vitesse axiale proche de la paroi du cône. De plus, une méthode d’estimation de la vitesse radiale moyenne a été développée. Ces mesures ont permis de caractériser l’écoulement primaire et les écoulements secondaires et d’analyser leur évolution entre les deux axes. De plus, l’évolution de ces écoulements est analysée en fonction de la chute de performance de la turbine. Les principales particularités de l’écoulement sont la présence d’une recirculation sous le moyeu, d’une zone contrarotative, des sillages des directrices et des tourbillons de bout de pale. / This thesis presents the experimental study of the draft tube inflow of a bulb turbine with a steep drop in performance. Measurements by laser Doppler velocimetry (LDV) were performed on two axes: downstream of the blades of the wheel and downstream of the wheel hub. A feature of this study is the design of a setup that allows the measurement of the axial velocity near the wall of the cone. In addition, a method of estimating the average radial velocity was developed. These measurements were used to characterize the primary flow and the secondary flows and analyze their evolution between the two axes. Moreover, the evolution of these flows is analyzed according to the turbine performance drop. The main features of the flow are the presence of recirculation downstream of the hub, a counter-rotating area, the guide vane wakes and of the blade tip vortices.
|
22 |
L'étude expérimentale du décollement à la sortie du diffuseur d'une turbine hydraulique de type bulbePereira Pabon, Jadid Mauricio 05 June 2024 (has links)
Ce projet présente l’étude expérimentale de l’écoulement à la sortie du diffuseur d’une turbine de type bulbe. La technique de mesure d’anémométrie laser à effet Doppler (LDV) a été utilisée pour les trois montages expérimentaux, situés au-dessus et sur les deux côtés du diffuseur pour obtenir les trois composantes de vitesse. Une importante chute de rendement a été mesurée dans un modèle réduit d’une turbine de type bulbe opérant à forte charge. Des études précédentes ont relié la chute de performance avec les pertes du diffuseur, et en particulier avec la zone de séparation de l'écoulement aux parois du diffuseur. Dans la présente étude, l'écoulement a été étudié à la sortie de la trompette de la turbine, qui est une section du diffuseur qui permet de passer d'une section circulaire à une section rectangulaire. La turbine a été étudiée pour cinq conditions d'opération, qui représentent les différents phénomènes de l'écoulement à la sortie du diffuseur. En plus du champ de vitesse, l'analyse a été effectuée pour le coefficient d’intermittence de la vitesse débitante et pour la composante de la vorticité autour l’axe axial Z. Les résultats révèlent une zone contrarotative dans le diffuseur, qui s'intensifie avec l'ouverture des directrices. L'ouverture des directrices induit une modification aux phénomènes hydrauliques : à partir d'une recirculation de l'écoulement dans la zone centrale pour la condition d'opération à plus faible charge, vers un écoulement de retour induit par la séparation de l'écoulement aux parois pour les conditions d'opérations à forte charge. / This project presents the experimental study of the flow at the diffuser outlet of a bulb turbine. Measurements by laser Doppler velocimetry (LDV) were performed on three experimentals setups located above and on two sides of the diffuser to obtain the three velocity components. An important drop in turbine performances has been measured in a bulb turbine model operated at overload. Previous investigations have correlated the performance drop with diffuser losses, and particularly to the flow separation zone at the diffuser wall. In the present study, the flow has been investigated at the exit of the turbine, which is a diffuser section that transforms from a circular to a rectangular section. The turbine has been operated at five operating points, which are representative of different flow patterns at the diffuser exit. In addition to the average velocity field, the analysis has been conducted based on a backflow occurrence function and on the vorticity level. Results reveal a counter-rotating zone in the diffuser, which intensifies with the guide vanes opening. The guide vanes opening induces a modification of the flow phenomena: from a central backflow recirculation zone at the lowest flowrate to a backflow zone induced by flow separation at the wall at the highest flowrate.
|
23 |
Optimizing the power-generation performance of flapping-foil turbines while simplifying their mechanical design with the use of elastic supportsBoudreau, Matthieu 18 April 2024 (has links)
Due à la complexité des mécanismes typiquement requis pour contraindre l’aile d’une turbine à aile oscillante à suivre des mouvements spécifiques, cette thèse étudie la possibilité de bénéficier de mouvements non contraints, dits passifs. En pratique, cela implique que l’aile est attachée à la structure de la turbine à l’aide de supports élastiques indépendants en pilonnement et en tangage, formés de ressorts et d’amortisseurs. Par conséquent, seul un contrôle indirect des mouvements est possible en ajustant adéquatement les paramètres structuraux affectant la dynamique de l’aile, tels que les paramètres d’inertie, d’amortissement et de raideur de l’aile et de ses supports élastiques. En premier lieu, un prototype ayant des mouvements passifs autant en pilonnement qu’en tangage, et donc étant complètement passif, a été conçu et testé dans un canal à surface libre. Cette première phase du présent travail de recherche a confirmé la faisabilité et le potentiel de ce concept en permettant d’extraire une quantité significative d’énergie de l’écoulement d’eau. Cependant, l’efficacité maximale atteinte est demeurée inférieure à ce qui peut être obtenu en contraignant l’aile à suivre des mouvements précis. Suite à ces expériences, un algorithme résolvant la dynamique du solide a été implémenté et couplé au logiciel résolvant la dynamique du fluide gouverné par les équations de Navier-Stokes. Des simulations numériques ont été réalisées afin d’analyser plus en détail la dynamique de chacun des deux degrés de liberté de l’aile. Plutôt que de poursuivre notre étude du concept complètement passif immédiatement, un concept de turbine semi-passive caractérisée par un mouvement de tangage passif et un mouvement de pilonnement contraint a été considéré. Des efficacités de l’ordre de 45% ont été atteintes, se comparant ainsi aux meilleures performances rapportées dans la littérature concernant les turbines à ailes oscillantes complètement contraintes. En plus de révéler le fort potentiel de ce concept de turbine semi-passive, cette étude nous a permis de nous concentrer sur certains aspects spécifiques concernant la dynamique d’une aile attachée par des ressorts en tangage. Cette analyse plus détaillée de la physique en jeu a été facilitée par le nombre réduit de paramètres structuraux en jeu par rapport à une turbine pour laquelle le mouvement de pilonnement est lui aussi passif. L’une des découvertes importantes est que le centre de masse doit être situé en aval du point de pivot afin de générer un transfert d’énergie du mouvement de pilonnement vers le mouvement de tangage par l’entremise du couplage inertiel entre les deux degrés de liberté. Ce transfert d’énergie est crucial puisque les mouvements de tangage optimaux nécessitent de l’énergie en moyenne pour être soutenus. De plus, un paramètre combinant les effets liés au moment d’inertie de l’aile par rapport à son point de pivot et à la raideur en tangage a été proposé. Ce paramètre permet de bien caractériser la dynamique du mouvement de tangage passif de la turbine semi-passive. Il permet aussi de déterminer la raideur requise pour différentes valeurs du moment d’inertie afin de maintenir une performance optimale de la turbine. Utilisant les connaissances acquises concernant la dynamique des mouvements de tangage passifs, le concept de turbine à aile oscillante complètement passive a été revisité. Les meilleures efficacités obtenues avec la turbine semi-passive ont été égalées et ont même été surpassées puisque qu’une efficacité de 53.8% a été atteinte. Les résultats ont aussi démontré qu’une performance optimale pouvait être maintenue sur de larges plages de valeurs en ce qui concerne la masse en pilonnement ainsi que le moment d’inertie par rapport au point de pivot, pourvu que les raideurs en pilonnement et en tangage soient ajustées correctement. / Due to the complexity of the mechanisms typically required when designing a flapping-foil turbine to prescribe specific heave and pitch motions, this thesis investigates the possibility of benefiting from unconstrained motions. In practice, this means that the foil is attached to the turbine structure with independent elastic supports in heave and in pitch, which consist in springs and dampers. Consequently, only an indirect control over the foil motions is possible through an adequate adjustment of the structural parameters affecting the foil dynamics, namely the inertial, damping and stiffness characteristics of the elastically-supported foil. Such motions are referred to as passive motions. As a first step, a turbine prototype with passive heave and pitch motions, thus being fully-passive, has been designed and tested in a water channel. This first phase of the present research work has confirmed the feasibility and the potential of this concept to extract a significant amount of energy from a fluid flow. However, the maximum efficiency that has been obtained is smaller than what can be achieved when prescribing specific foil motions. Following these experiments, a solid solver has been implemented and coupled with a Navier-Stokes fluid solver. Numerical simulations have been carried out to analyze the dynamics of both degrees of freedom in more details. Instead of immediately pursuing our study of the fully-passive flappingfoil turbine, a semi-passive concept, with a passive pitch motion and a prescribed heave motion, has been considered. Efficiencies of the order of 45% have been achieved, hence competing with the best performance reported in the literature for flapping-foil turbines with prescribed motions. In addition to revealing the great potential of this semi-passive turbine concept, this study has allowed us to focus on some specific aspects of the dynamics of passive pitch motions. This more detailed analysis of the physics at play has been facilitated by the reduced number of structural parameters affecting the foil dynamics compared to a turbine for which the foil is also elastically-supported in heave. One of the main findings is that the center of mass must be positioned downstream of the pitch axis in order to generate a net transfer of energy from the heave motion to the pitch motion via the inertial coupling between the two degrees of freedom. This energy transfer is crucial because optimal pitch motions require energy on average to be sustained. Moreover, a parameter combining the effects of the moment of inertia of the foil about the pitch axis and the pitch stiffness has been proposed. This parameter effectively characterizes the pitch dynamics of the semi-passive turbine. It also allows properly scaling the pitch stiffness when different moments of inertia are considered with the objective of maintaining an optimal turbine performance. Having improved our knowledge about the dynamics of passive pitch motions, the fully-passive flapping-foil turbine concept has been revisited. The best efficiencies obtained with the semi-passive concept have been matched, and even exceeded since an efficiency of 53.8% has been reached. The results have also demonstrated that an optimal performance can be maintained over large ranges of values regarding the heaving mass and the moment of inertia when the heave and pitch stiffness coefficients are adjusted adequately.
|
24 |
Analyse expérimentale et numérique de l'écoulement dans le canal d'entrée d'un modèle de turbine bulbeLongchamp, Quentin 20 April 2018 (has links)
Ce travail de maitrise s’inscrit dans le cadre des activités de recherche du Laboratoire de Machines Hydraulique de l’Université Laval et a pour objectif la caractérisation de l’écoulement dans le canal d’entrée d’un modèle de turbine hydraulique de type bulbe. La représentation des champs de vitesses moyennes et des fluctuations sous différentes conditions d’opérations ont été obtenues en utilisant un système de mesure LDV. Un débalancement du débit et des structures tourbillonnaires dans le canal d’entrée ont été mises en évidence. La conception d’une géométrie d’obstacle provoquant une non-uniformité dans le canal d’entrée a été développée en tenant compte des prédictions de simulations numériques. Des simulations numériques de la machine complète en régime stationnaire et instationnaire selon deux configurations géométriques ont été menées pour déterminer l’influence des conditions d’entrée de l’écoulement sur les performances de la machine. Des comparaisons entre les quantités expérimentales et numériques ont été réalisées. / This work is part of the research activities of the Hydraulic Machines Laboratory of the Laval University and its objective is to contribute to the characterisation of the intake flow in a model of a bulb turbine. The representation of the mean velocity fields and the turbulent fluctuations under predefined operating conditions were obtained by the use of a LDV measurement system. Mass-flow imbalance and vortices in the intake channel were identified. The conception of an obstacle geometry causing a non-uniformity in the intake channel has been developed taking in consideration the predictions of numerical simulation. Numerical simulations of the complete machine for both steady and unsteady case were performed with and without obstacle in the intake channel. The objective of this process was to evaluate the influence of the intake flow condition on the turbine performances. Moreover, comparisons between experimental and numerical quantities were made.
|
25 |
Prediction of erosion damages in hydraulic machines for hydro-abrasive erosionBoden, Wiebke 20 September 2017 (has links)
L’énergie hydraulique, où l’énergie cinétique de l’eau est transformée en énergie électrique, représente une contribution importante aux énergies renouvelables. L’eau qui passe par les turbines hydrauliques contient toujours une partie solide, par exemple du sable et de l’argile. Ces sédiments peuvent atteindre des niveaux de concentration élevés, ce qui nuit considérablement à la structure de la turbine par un mécanisme d’endommagement appelé érosion hydro-abrasive. Des types de turbine impliquant des vitesses d’écoulement très élevées, comme les turbines Pelton, sont particulièrement sensibles à l’érosion hydro-abrasive. Les simulations numériques présentent un moyen efficace d’étudier le sujet de l’érosion hydro-abrasive dans les turbines Pelton car elles permettent facilement la variation des nombreux paramètres. Ainsi, une réponse immédiate aux questions opérationnelles, de conception ou d’optimisation peut être obtenue. Cependant, il a été démontré que l’application des modèles d’érosion généraux et souvent utilisés ne fournit pas de résultats corrects en raison des propriétés particulières du matériel et de l’écoulement des turbines Pelton. Par conséquent, ce travail étudie le potentiel de la modélisation de l’érosion directe basée sur des principes fondamentaux. Cela implique que le mouvement des sédiments dans le fluide est simulé, leurs paramètres au moment de l’impact enregistrés et ensuite l’endommagement macroscopique global du matériel calculé sur la base des simulations de structure en microéchelle. Une formulation très appropriée pour les simulations fluides dans les turbines Pelton est une méthode sans maillage, plutôt nouvelle, qui s’appelle Smoothed Particle Hydrodynamics (SPH). Par conséquent, la première partie de ce travail aborde la mise en oeuvre et l’évaluation d’un modèle Lagrangien de transport des sédiments dans le cadre de cette méthode où les sédiments sont transportés par une équation de mouvement. L’effet du bruit inhérent à la méthode SPH sur le mouvement des sédiments est évalué par rapport à l’effet de la dispersion turbulente des sédiments, qui a été introduite par un modèle basé sur l’équation de Langevin. En outre, les termes liés aux différentes forces dans l’équation du mouvement sont étudiés dans le cadre de la méthode SPH. Une deuxième partie de ce travail développe une approche efficace et généralement applicable pour obtenir l’endommagement globale sans adopter des modèles d’érosion. Pour obtenir cet endommagement global en macroéchelle, l’endommagement causé par un seul impact de sédiment, qui est calculé par des simulations de structure en microéchelle, est combiné avec les statistiques d’impact des simulations du fluide. / Hydraulic energy represents one important contribution to the growing source of renewable energies where the kinetic energy of water is transformed into electric energy. The water flowing through the hydraulic turbines always contains a solid part, for example sand and clay. Those sediments can reach high concentrations, harming importantly the turbine structure by a mechanism called hydro-abrasive erosion. Turbine types implying very high flow velocities, like Pelton turbines, are in particular sensitive to hydro-abrasive erosion. Numerical simulations present an efficient way to study the topic of hydro-abrasive erosion in Pelton turbines as they allow the variation of numerous parameters. Thus an immediate response to operational, design or optimization questions can be obtained. However it has been shown that the application of general, widely used erosion models do not deliver physical correct results due to the particular material and flow properties of Pelton turbines. Consequently this work investigates the potential of erosion modeling based on first principals. That means the sediment movement in the fluid is simulated, their state at impact tracked and then the overall macroscopic material damage calculated based on microscale structural simulations. A convenient formulation for fluid simulations in Pelton turbines is the rather novel, meshless method Smoothed Particle Hydrodynamics (SPH). Therefore the first part of this work addresses the implementation and evaluation of a Lagrangian sediment transport model in the framework of this method where sediments are transported by a particle equation of motion. The effect of the SPH method inherent noise on the sediment movement is evaluated against the effect of the turbulent dispersion of the sediments, which has been introduced via an ad-hoc model based on the Langevin equation. Furthermore the different force terms in the particle equation of motion are investigated with respect to the SPH method. A second part develops an efficient and general applicable approach to obtain the overall erosion damage without adopting erosion models. Therefore the damage caused by a single sediment impact is calculated by structural simulations on the microscale in a first step. In a second step that isolated damage is combined with impact statistics from the fluid simulations and hence gives the overall damage profile on the macroscale.
|
26 |
Simulation de l'écoulement turbulent dans les aspirateurs de turbines hydrauliques : impact des paramètres de modélisation /Payette, Félix-Antoine. January 2008 (has links)
Thèse (M.Sc.)--Université Laval, 2008. / Bibliogr.: f. [147]-149. Publié aussi en version électronique dans la Collection Mémoires et thèses électroniques.
|
27 |
Modélisation et contrôle des turbines hydrauliques pour l'intégration des sources d'énergies renouvelabless / Modeling and Control of Hydraulic Turbines for the Integration of Renewable Sources of EnergyMohamed, Amgad 26 April 2019 (has links)
Récemment, les sources d’énergie renouvelables telles que l’énergie éolienne et solaire, sont devenues des éléments essentiels des réseaux électriques en tant qu’alternatives d’énergie propre aux combustibles fossiles. Cependant, la qualité de la production de telles ressources énergétiques dépend de différents facteurs incertains, tels que les conditions météorologiques. Par conséquent, la gestion intermittente des sources d’énergie renouvelables est l’un des principaux défis à relever pour une utilisation à plus grande échelle.Une solution possible pour réduire les effets de l'intermittence des ressources énergétiques sur la production d'énergie et la stabilité du réseau consiste à utiliser les technologies de stockage d'énergie. Les stations de transfert d’énergie par pompage (STEP) semblent être la méthode de stockage propre unique qui peut être utilisée pour lutter contre la nature intermittente de l’énergie éolienne et solaire. Les STEP utilisent des pompes-turbines réversibles pouvant fonctionner comme des pompes pour stocker l'excès d'énergie électrique dans le réseau et comme des turbines pour générer de l'énergie électrique, lorsque davantage d'énergie électrique est nécessaire. Ainsi, les STEP aident à stabiliser le réseau en présence de ressources en énergies renouvelables intermittentes.Ce travail met l’accent sur les conditions de fonctionnement de la turbine pour le démarrage des STEP. Dans les STEP, la condition de fonctionnement de démarrage est généralement visitée plusieurs fois, à la suite d'un basculement entre les modes de pompage et de turbine. Ainsi, l'amélioration des performances des régulateurs de vitesse utilisés pour le démarrage devient plus importante lorsque l'on traite avec des STEP afin de permettre une récupération rapide de la tension.Cette thèse s'inscrit dans le cadre du projet pluridisciplinaire INNOVHYDRO, qui regroupe différents laboratoires et entreprises tels que, GIPSA-lab où cette thèse a été préparée, G2Elab, GE et EDF.Dans cette thèse, une architecture de contrôleur prenant en compte les limitations informatiques des microcontrôleurs existants utilisés chez GE est proposée. Elle apporte une solution au problème du démarrage rapide de la turbine tout en évitant l'excitation de fortes oscillations de pression. De plus, les contraintes de couple s'intègrent facilement pour permettre un démarrage en douceur, ce qui réduit la fatigue des composants mécaniques, résultant du démarrage répétitif des turbines.Des solutions sont proposées pour ajuster les gains du contrôleur, tout en tenant compte de la dynamique non linéaire de l'actionneur utilisé chez GE. Pour commencer, une méthodologie de réglage est décrite pour garantir la stabilité asymptotique et les performances en boucle fermée, tout en minimisant la limite supérieure de l'erreur de suivi en sortie. De plus, une approche d'optimisation systématique est développée pour sélectionner les gains du contrôleur afin de minimiser le temps nécessaire pour obtenir une connexion stable au réseau, tout en respectant les contraintes de couple maximales. De plus, des algorithmes sont utilisés pour choisir les paramètres du contrôleur de sorte que des certificats de robustesse soient obtenus sur le contrôleur résultant.De plus, un simulateur a été développé pour les centrales hydrauliques et utilisé pour tester le contrôleur proposé. Le simulateur est constitué d’un système d’équations différentielles continues qui modélisent systématiquement le comportement des différents composants de la centrale hydraulique, tels que les conduites forcées, les tunnels, les réservoirs et les cheminées d’équilibre. De plus, le comportement non linéaire et les caractéristiques en S des régions instables des turbines hydrauliques, généralement modélisées par des diagrammes de Hill, sont pris en compte avec succès. De plus, la dynamique non linéaire de l'actionneur est incluse dans le modèle mathématique complet. / Recently, renewable energy resources such as, wind and solar energy, have become integral parts of electric grids as clean energy alternatives to fossil fuels. However, the quality of production of such resources of energy depends on different uncertain factors, for instance, weather conditions. Therefore, dealing with the intermittent nature of renewable energy resources is one of the main challenges when using them on a larger scale.A possible solution to reduce the effects of energy resources intermittency on energy production and grid's stability, is to use energy storage technologies. Pumped storage power plants (PSPs) seem to be the unique clean storage method that can be used to counteract the intermittent nature of wind and solar energy. PSPs make use of pumps-turbines which are capable of working as pumps to store excess electric energy in the grid, and as turbines to generate electric energy, when more electric energy is needed. Thus, PSPs help in stabilizing the grid in the presence of intermittent renewable energy resources.The emphasis in this work is on turbine start-up operating mode for PSPs. In PSPs, the start-up operating mode is usually visited multiple times, as a result of switching back and forth between pumping and turbine modes. Thus, enhancing the performance of the speed governors used for starting-up becomes more important when dealing with PSPs to enable a rapid voltage recovery.This PhD thesis is part of the multidisciplinary INNOVHYDRO project that includes different laboratories and enterprises such as, GIPSA-lab where this thesis was prepared, G2Elab, GE and EDF.In this thesis, a controller architecture that takes into account the computational limitations of existing microcontrollers in use at GE, is proposed. It provides a solution to the problem of fast turbine start-up, while avoiding the excitation of sharp pressure oscillations. In addition, torque constraints are easily integrated to achieve smoother start-up, which reduces the fatigue of the mechanical components, resulting from repetitive start-up of turbines.Different approaches are proposed to tune the controller gains, while taking into account the nonlinear dynamics of the actuator used at GE. To begin with, a tuning methodology is outlined to guarantee the asymptotic stability and the closed-loop performance, while minimizing the guaranteed upper bound on the output tracking error. In addition, a systematic optimization approach is developed to select the controller gains to minimize time needed to get a stable start-up, while respecting maximum torque constraints. Moreover, randomized algorithms are used to choose the controller parameters such that robustness certificates are obtained on the resulting controller.Furthermore, a simulator has been developed for hydraulic power plants and used to test the proposed controller. The simulator constitutes of a system of continuous differential equations, which systematically model the behavior of the different components of the hydraulic power plant such as, penstocks, tunnels, reservoirs and surge tanks. In addition, the nonlinear behavior and unstable regions 'S-characteristics' of hydraulic turbines, usually modeled by Hill charts, are successfully taken into consideration. Moreover, the actuator's nonlinear dynamics are included in the overall mathematical model.
|
28 |
Étude expérimentale de l'écoulement dans le canal inter-aube d'une turbine de type bulbeLemay, Sébastien 20 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2013-2014. / Ce mémoire présente l'étude expérimentale de l'écoulement dans le canal inter-aube d’une roue de turbine de type bulbe. Pour ce faire, deux campagnes de mesures ont été réalisées. La première a fait usage de l’anémométrie laser à effet Doppler (LDV). La seconde campagne a fait appel à l’anémométrie par image de particules (PIV) et à un montage stéréoscopique endoscopique conçu sur mesure pour atteindre la région ciblée. Les données recueillies permettent de caractériser plusieurs phénomènes. L’importance du sillage des directrices entre les aubes de la roue est mise en évidence par les deux techniques de mesure. La campagne de mesure par LDV permet plus spécifiquement de cibler les tourbillons de jeu de bout d’aube et d’identifier des débalancements fixe et rotatif. En complément, les mesures par PIV révèlent la présence d’un tourbillon qui provient du bord d’attaque près du moyeu lorsque la turbine opère à charge partielle. / This work presents the experimental study of the flow in the inter-blade channel of the runner of a bulb turbine. To do so, two measurement campaigns were carried out. The first used laser Doppler velocimetry (LDV). The second campaign used particle image velocimetry (PIV) and a custom designed stereoscopic endoscopic setup allowed reaching this otherwise difficult to access measurement plane. A comparison of the two sets of data collected indicates a good match over the entire area on which they overlap. The gathered data allows characterising many phenomena. The importance of the guide vanes wake on the runner flow is highlighted by both measurement techniques. The LDV measurement campaign allows characterizing the blade tip vortices and identifying fixed and rotary flow imbalances. In addition, the PIV measurements reveal the presence of a vortex that originates from the leading edge near the hub when the turbine operates at partial load.
|
29 |
Simulations avancées de l'écoulement turbulent dans les aspirateurs de turbines hydrauliquesBélanger-Vincent, Philippe 16 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2010-2011 / Le présent mémoire a comme objectif principal de procéder à la simulation d'un aspirateur de turbine existant en utilisant le DES, soit une nouvelle approche de modélisation de la turbulence. Il est postulé que la meilleure représentation de l'écoulement instationnaire qui existe dans cette partie de la machine pourrait faire la lumière sur la discordance entre la courbe de rendement applatie mesurée en centrale et la courbe prédite par les simulations RANS. Afin de procéder à ces simulations avancées, l'approche DES est d'abord testée avec un cas d'écoulement tourbillonnant dans un diffuseur conique pour lequel des données expérimentales sont disponibles. Par la suite, le cas de l'aspirateur réel est traité et plusieurs comparaisons entre les approches RANS, URANS et DES sont dégagées. Les résultats démontrent l'importance d'établir une méthodologie rigoureuse pour appliquer l'approche DES à un écoulement tourbillonnant dans un diffuseur. Principalement, le phénomène néfaste propre au DES de la séparation induite par le maillage (GIS) se manifeste très facilement pour ce type d'écoulement. Il est montré que les modèles qui protègent la couche limite, nommément les modèles DDES SA et DDES SST, sont beaucoup plus polyvalents et mieux adaptés à ces écoulements. Aussi, l'analyse des conditions d'entrée a montré, tant pour le diffuseur que pour l'aspirateur, que le niveau de viscosité tourbillonnaire qui y est prescrit doit être significativement plus faible que celui imposé en RANS. Les résultats finaux montrent une claire supériorité de l'approche DDES sur l'approche URANS pour prédire les instationnarités présentes pour les cas étudiés. Plus particulièrement pour l'aspirateur, le DDES permet de faire une analyse du tourbillon de sortie de roue et de ses caractéristiques associées à la charge. Par rapport à la prédiction de la performance, l'utilisation du DDES ne modifie pas la forme de la courbe de rendement. Il semble que la prédiction de la performance de l'aspirateur soit majoritairement gouvernée par la modélisation RANS en proche paroi et que le plateau dans la courbe de rendement mesurée ne soit pas entièrement attribuable à un phénomène instationnaire prenant place au centre de l'aspirateur.
|
30 |
Simulations numériques de l'écoulement turbulent dans un aspirateur de turbine hydrauliqueBeaubien, Carl-Anthony 19 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2013-2014. / Le présent mémoire a pour objectif d’améliorer la prédiction des phénomènes de perte dans les aspirateurs de turbines hydrauliques. Pour ce faire, l’écoulement dans un aspirateur caractérisé par une diminution abrupte du coefficient de récupération près du meilleur point de fonctionnement a été étudié. Une méthode avancée de modélisation de la turbulence, le DES, a été mise à l’essai, afin de déterminer les gains associés à une représentation plus fine des mouvements turbulents dans cette composante. Les requis méthodologiques liés à cette approche, notamment par rapport à la condition d’entrée, ont été explorés, dans le but de développer une meilleure expertise d’utilisation du DES. Il a été démontré que le profil de vitesse radiale imposé dans le plan d’entrée du domaine de calcul altère de façon significative l’écoulement en aval et les performances prédites. Avec le profil de vitesse radiale mesuré expérimentalement, l’allure de la courbe de performance de l’aspirateur a pu être assez bien reproduite avec l’approche de modélisation de la turbulence URANS. Toutefois, certains aspects des simulations ne concordent pas bien avec les mesures expérimentales, c’est notamment le cas de l’écart de débit entre les deux canaux de sortie. Il a été établi que les structures d’écoulement en rotation sous les aubes de la roue nécessitent une discrétisation spatiale et temporelle extrêmement fine pour éviter qu’elles se diffusent prématurément sous le plan d’entrée. Toutefois, au point d’opération considéré, leur influence sur les performances de l’aspirateur s’est avérée très faible. Les simulations DES et URANS de l’aspirateur où des conditions d’entrée axisymétriques ont été imposées ont prédit des performances similaires. Cependant, le DES permet de simuler une dynamique tourbillonnaire beaucoup plus riche, avec un maillage et un pas de temps similaire au URANS, tout en étant largement moins dépendant des quantités turbulentes modélisées imposées dans le plan d’entrée. / The work carried throughout this thesis has for objective to enhance losses predictions in hydraulic turbines draft tube. In order to acheive this, the flow in a draft tube charaterized by a sharp drop in the pressure recovery coefficient near the best efficiency point was studied. Detached Eddy Simulation (DES), an advanced turbulence modeling approach, was put to the test, in order to asses the gain attributable to a finer and more precise description of turbulent motions in this component. The numerical methods required associated to this approach, especially regarding the inlet boundary condition, were investigated. It was shown that the radial velocity profile specified at the inlet of the computational domain alters significantly the flow downstream and the predicted performance. With the measured radial velocity profile specified at the inlet of the draft tube, reasonnable agreement was found between URANS numerical results and experimental measurements of pressure recovery. However, some aspects of the numerical simulations does not agree well with experimental data. It is the case for flow imbalance between the two outlet bays. It was established that rotating flow structures underneath the runner blades require extremely fine grid and time step resolution to avoid their premature diffusion underneath the inlet plane. Nevertheless, at the studied operating point, their influence on draft tube performance was found to be very limited. DES and URANS simulations of the draft tube where axisymmetric inlet boundary conditions were imposed predicted similar pressure recovery. However, DES enables to simulate much more complex and rich turbulent motions, at a computational cost similar to the one of a URANS simulatation and with much less influence from the modeled turbulent quantities specified at the inlet plane.
|
Page generated in 0.0594 seconds