Spelling suggestions: "subject:"turbulent low"" "subject:"turbulent flow""
141 |
Etude numérique du comportement thermique d’un séchoir solaire utilisant un lit thermique pour le stockage d’énergie / Numerical study of the thermal behavior of a solar dryer using a packed bed for energy storageKhaldi, Souheyla 23 June 2018 (has links)
Cette thèse présente une étude numérique d’un séchoir solaire indirect à convection naturelle destiné à sécher les produits agricoles (les figues). La première partie analyse un séchoir solaire contenant une chambre de séchage couplée à un absorbeur inversé et une cheminée solaire. Les simulations ont été faites afin de déterminer les champs dynamique et thermique sous l’influence de la variation de la configuration de la cheminée solaire et la taille de l’ouverture d’admission. Les équations de conservations basées sur le modèle de turbulence k-ε standard sont résolues par la méthode des volumes finis à l’aide du code commercial ANSYS-Fluent. La deuxième partie analyse l’effet d’ajouter un stockage thermique sous forme d’un lit en gravier dans la chambre de séchage. Le lit est modélisé comme un milieu poreux. En plus, cette étude propose l’utilisation d’une deuxième entrée d'air dans la chambre de séchage afin d’assurer une distribution thermique plus homogène au niveau des claies et de garantir un séchage plus uniforme. / This thesis presents a numerical study of an indirect natural convection solar dryer for drying agricultural products (Figs). The first part analyzes a solar dryer containing a drying chamber coupled to a reversed absorber and a solar chimney. Simulations were made to determine the dynamic and thermal fields under the influence of the variation of the solar chimney configuration and the size of the inlet opening. The governing equations based on the standard k-ε turbulence model are solved by the finite volume method using the ANSYS-Fluent commercial code. The second part analyzes the effect of adding a thermal storage in the form of a gravel bed in the drying chamber. The bed is modeled as a porous medium. Furthermore, this study proposes the use of a second air inlet in the drying chamber in order to ensure a more homogeneous thermal distribution at the level of the racks and to guarantee a more uniform drying.
|
142 |
Numerical Simulation of Flow in Ozonation ProcessZhang, Jie 01 May 2014 (has links)
In the last two decades, Computational Fluid Dynamics (CFD) has shown great potential as a powerful and cost-efficient tool to troubleshoot existing disinfection contactors and improve future designs for the water and wastewater treatment utilities.
In the first part of this dissertation two CFD simulation methodologies or strategies for computing turbulent flow are evaluated in terms of the predicted hydraulic performance of contactors. In the LES (large eddy simulation) methodology, the more energetic, larger scales of the turbulence are explicitly computed or resolved by the grid. In the less computationally intensive RANS (Reynolds-averaged Navier-Stokes) methodology, only the mean component of the flow is resolved and the effect of the unresolved turbulent scales is accounted for through a turbulence model. For baffled contactors, RANS performs on par with the LES in predicting hydraulic performance indices. In this type of contactors, hydraulic performance is primarily determined by quasi-steady recirculating (dead) zones within the contactor chambers which are well-resolved in both RANS and LES. Testing of the RANS methodology is also performed for a wastewater stabilization pond leading to prediction of hydraulic performance indices in good agreement with field measurements. However, for column contactors, LES performs better than RANS due to the ability of the LES to resolve unsteady or unstable flow structure associated with spatial transition to turbulence which is important in the determination of the hydraulic performance of the contactor.
In the second part of this dissertation the RANS methodology is adapted in order to develop a novel modeling framework for ozone disinfection of drinking water. This framework is unique as it combines CFD with kinetics-based reaction modeling to predict disinfection performance and bromate formation for the first time. Bromate, a human health hazard, is an undesired by-product of the disinfection of drinking water via ozonation. The modeling framework is validated via application to a full-scale ozone contactor. Predictions of ozone and bromate concentrations are consistent with data from physical experiments.
|
143 |
Thermal Feasibility and Performance Characteristics of an Air-Cooled Axial Flow Cylindrical Power Inverter by Finite Element AnalysisTawfik, Jonathan Atef 01 May 2011 (has links)
The purpose of the present study is to determine the thermal feasibility of an air-cooled power inverter. The inverter circuitry layout is designed in tandem with the thermal management of the devices. The cylindrical configuration of the air-cooled inverter concept accommodates a collinear axial air blower and a cylindrical capacitor with inverter cards oriented radially between them. Cooling air flows from the axial fan around the inverter cards and through the center hole of the cylindrical capacitor. The present study is a continuation of the thermal feasibility study conducted in fiscal year 2009 for the Oak Ridge National Laboratory to design a power inverter with a radial inflow cylindrical configuration. Results in the present study are obtained by modeling the inverter concept in computer simulations using the finite element method. Air flow rate, ambient air temperature, voltage, and device switching frequency are studied parametrically. Inlet air temperature was 50°C for all the results reported. Transient and steady-state simulations are based on inverter current that represents the US06 supplemental federal test procedure from the US EPA. The source of heat to the system comes from the power dissipated in the form of heat from the switches and diodes and is modeled as a function of the voltage, switching frequency, current, and device temperature. Since the device temperature is a result as well as an input variable, the steady-state and transient solution are iterative on this parameter. The results demonstrate the thermal feasibility of using air to cool an axial-flow power inverter. This axial inflow configuration decreases the pressure drop through the system by 63% over the radial inflow configuration, and the ideal blower power input for an inlet air flow rate of 540 cfm is reduced from 936 W to 312 W for the whole inverter. When the model is subject to one or multiple current cycles, the maximum device temperature does not exceed 164°F (327°F) for an inlet flow rate of 270 cfm, ambient temperature of 120°C, voltage of 650 V, and switching frequency of 20 kHz. Although the maximum temperature in one cycle is most sensitive to ambient temperature, the ambient temperature affect decays after approximately half the duration of one cycle. Of the parametric variables considered in the transient simulations, the system is most sensitive to inlet air flow rate.
|
144 |
Compressible Turbulent Flows : LES and Embedded Boundary MethodsKupiainen, Marco January 2009 (has links)
QC 20100726
|
145 |
Fibre Orientation Modelling Applied to Contracting Flows Related to PapermakingHyensjö, Marko January 2008 (has links)
The main goal of this work was to develop numerical models for studying the behaviour of fibres in an accelerated flow. This is of special interest for e.g. papermaking. The early stage of the paper manufacturing process determines most of the final properties of a paper sheet. The complexity of studying the flow of fibre suspensions both experimentally and numerically emphasises a need for new ideas and developments. By means of solving the evolution of a convective-dispersion equation, i.e. the Fokker-Planck equation, a fully 3D approach with respect to the position and the two fibre angles, polar and azimuthal angles, following a streamline is presented. As an input to the fibre orientation model the turbulent flow field is solved by Computational Fluid Dynamics (CFD) with second-order closure in the turbulence model. In this work two new hypotheses have been presented for the variation of the non-dimensional rotational diffusivity with non-dimensional fibre length, Lf /η and the Reynolds number based on the Taylor micro-scale of the turbulence, Reλ Parameters for the two new hy- potheses and earlier models are determined with the aim of achieving a general relation and a value of the rotational dispersion coeffcient of stiff fibres in an anisotropic turbulent fluid flow. Earlier modelling work has been focused on solving the planar approach, i.e. assuming all fibres to be in one plane. This planar approach is discussed and compared with the fully 3D approach and its validity is evaluated. The optimization of parameters for the different hypotheses correlated on a central streamline, showed a good agreement with an independent experimental result in the undisturbed region. Moreover, it is particularly interesting that the boundary layer region and the wake region are predicted fairly well and the phenomena are well described, which has not been the case earlier. It seems that the new hypothesis based on the variation of the non-dimensional fibre length, Lf /η gives the best correlation in these shear-layer regions. Further- more it was established that the planar approach fails to predict shear layers, i.e. the boundary layer and the wake regions. As emphasized in the theory section, the planar formulation is strictly valid only if all fibres are oriented in one plane, which is not the case in the shear layers. In the undisturbed region, the 3D and the planar approaches, agree in their results. This leads to the conclusion that both approaches are suitable when shear layers are not studied. / QC 20100812
|
146 |
Sedimentation Of Heavy Particles In TurbulenceMoharana, Neehar Ranjan 04 1900 (has links)
Behavior of particles in buoyancy driven turbulent flow at Ra ≈ 10º is investigated experimentally. The volume fraction of the particles is low enough for the inter particle influence to be neglected, the mass loading of particle is low enough that the turbulence as not modified, and the particles Reynolds numbers (Re p ) st are small enough that the wake effect can be neglected. The buoyancy driven turbulent flow is created by maintaining an unstable density difference, using NaCl dissolved in water, across the ends of a long vertical tube. There is no mean flow and the turbulence is axially homogeneous. A method for uniform introduction of the particles was devised. Glass particles (S.G=2.4-2.5) of different diameter ranges (50-400 µm) are introduced into this flow. The sizes of particles considered are less than the Kolmogrov length scale corresponding to the turbulence level. The turbulence intensity level was varied in order to match its characteristic time and velocity scale to those of the particles. The ratio of the timescales, the Stokes number; is in the range (0.01-0.55); Stokes number is defined as a ratio of the viscous relaxation time of the particle and a turbulent time scale, and represents the effect of the particle inertia in the interaction with the turbulence, Stk =τp/τk. Another important non-dimensional parameter is the velocity ratio, the k ratio of the particle settling velocity in still fluid to a characteristic turbulence velocity. The flow field is illuminated by a continuous Argon-ion laser and a PHOTRON high- speed digital camera is used for imaging. The raw images are processed to evaluate particle centers followed by their velocity measurements.
The objective of the experiment is to check for the effect of the turbulent flow on the sedimentation rate of the heavy particles. This sedimentation rate is compared with the settling velocity obtained in still water. It is expected that within a certain range of Stokes numbers and velocity ratios the sedimentation rate would be substantially changed, and the spatial concentration distribution of the particles may become patchy implying that turbulence may actually inhibit rather than enhance mixing of particles. By varying the turbulence level and particle mean diameter we achieved a set of values for the particle parameters, namely St k. ≈ 0.01, 0.1, 0.14, 0.55 and velocity ratios[[Wp ] St]]≈ 0.2, .0, 0.5, 2.25 respectively. The
w rms
velocity ratio [[Wp ] St /wf defined as a ratio between the article terminal velocity [Wp ] St and a suitable flow velocity scale; it is a measure of the residence time of the particle in an eddy, in eddy turnover time units. In this study we have considered the turbulence r.m.s velocity for the flow velocity scale.The particle Reynolds number (Re p)st corresponding to these 4 cases were 0.2, 31.5, 4.0, 31.5. Some preliminary quantitative measurements were made only for the 150-200 µm particles and turbulence level w rms ≈ 4.0 cm/s,corresponding to Stk ≈0.14 [[Wp ] St] = 0.5. A quantitative picture was obtained for the other cases.
Streak pictures for these four different groups of particles revealed that Stk and the velocity ratio [[Wp ] St ] were important in influencing the particle-
w rms
turbulence interaction not the Stk
alone. The r.m.s velocity fluctuations of particles in both the lateral (utp)
and vertical direction (wtp) measured were found to be different from those obtained in still-water case.(For equations, pl see the pdf file)
|
147 |
Two Dimensional Finite Volume Model for Simulating Unsteady Turbulent Flow and Sediment TransportYu, Chunshui January 2013 (has links)
The two-dimensional depth-averaged shallow water equations have attracted considerable attentions as a practical way to solve flows with free surface. Compared to three-dimensional Navier-Stokes equations, the shallow water equations give essentially the same results at much lower cost. Solving the shallow water equations by the Godunov-type finite volume method is a newly emerging area. The Godunov-type finite volume method is good at capturing the discontinuous fronts in numerical solutions. This makes the method suitable for solving the system of shallow water equations. In this dissertation, both the shallow water equations and the Godunov-type finite volume method are described in detail. A new surface flow routing method is proposed in the dissertation. The method does not limit the shallow water equations to open channels but extends the shallow water equations to the whole domain. Results show that the new routing method is a promising method for prediction of watershed runoff. The method is also applied to turbulence modeling of free surface flow. The κ - ε turbulence model is incorporated into the system of shallow water equations. The outcomes prove that the turbulence modeling is necessary for calculation of free surface flow. At last part of the dissertation, a total load sediment transport model is described and the model is tested against 1D and 2D laboratory experiments. In summary, the proposed numerical method shows good potential in solving free surface flow problems. And future development will be focusing on river meandering simulation, non-equilibrium sediment transport and surface flow - subsurface flow interaction.
|
148 |
A Parallel Newton-Krylov-Schur Algorithm for the Reynolds-Averaged Navier-Stokes EquationsOsusky, Michal 13 January 2014 (has links)
Aerodynamic shape optimization and multidisciplinary optimization algorithms have the potential not only to improve conventional
aircraft, but also to enable the design of novel configurations. By their very nature, these algorithms generate and analyze a large
number of unique shapes, resulting in high computational costs. In order to improve their efficiency and enable their use in the
early stages of the design process, a fast and robust flow solution algorithm is necessary.
This thesis presents an efficient parallel Newton-Krylov-Schur flow solution algorithm for the three-dimensional
Navier-Stokes equations coupled with the Spalart-Allmaras one-equation turbulence model.
The algorithm employs second-order summation-by-parts (SBP) operators on multi-block structured grids with simultaneous
approximation terms (SATs) to enforce block interface coupling and boundary conditions.
The discrete equations are solved iteratively with an inexact-Newton method, while the linear
system at each Newton iteration is solved using the flexible Krylov
subspace iterative method GMRES with an approximate-Schur parallel preconditioner. The algorithm is thoroughly verified and validated, highlighting the
correspondence of the current algorithm with several established flow solvers.
The solution for a transonic flow over a wing on a mesh of medium density (15 million nodes) shows good agreement with experimental results.
Using 128 processors, deep convergence is obtained in under 90 minutes.
The solution of transonic flow over the Common Research Model wing-body geometry with
grids with up to 150 million nodes exhibits the expected grid
convergence behavior. This case was completed as part of the Fifth AIAA Drag Prediction Workshop,
with the algorithm producing solutions that compare favourably with several widely used flow solvers.
The algorithm is shown to scale well on over 6000 processors. The results demonstrate the effectiveness of the SBP-SAT
spatial discretization, which can be readily extended to high order, in combination with
the Newton-Krylov-Schur iterative method to produce a powerful parallel algorithm for the numerical solution of
the Reynolds-averaged Navier-Stokes equations.
The algorithm can efficiently solve the flow over a range of clean geometries, making it suitable for
use at the core of an optimization algorithm.
|
149 |
A Parallel Newton-Krylov-Schur Algorithm for the Reynolds-Averaged Navier-Stokes EquationsOsusky, Michal 13 January 2014 (has links)
Aerodynamic shape optimization and multidisciplinary optimization algorithms have the potential not only to improve conventional
aircraft, but also to enable the design of novel configurations. By their very nature, these algorithms generate and analyze a large
number of unique shapes, resulting in high computational costs. In order to improve their efficiency and enable their use in the
early stages of the design process, a fast and robust flow solution algorithm is necessary.
This thesis presents an efficient parallel Newton-Krylov-Schur flow solution algorithm for the three-dimensional
Navier-Stokes equations coupled with the Spalart-Allmaras one-equation turbulence model.
The algorithm employs second-order summation-by-parts (SBP) operators on multi-block structured grids with simultaneous
approximation terms (SATs) to enforce block interface coupling and boundary conditions.
The discrete equations are solved iteratively with an inexact-Newton method, while the linear
system at each Newton iteration is solved using the flexible Krylov
subspace iterative method GMRES with an approximate-Schur parallel preconditioner. The algorithm is thoroughly verified and validated, highlighting the
correspondence of the current algorithm with several established flow solvers.
The solution for a transonic flow over a wing on a mesh of medium density (15 million nodes) shows good agreement with experimental results.
Using 128 processors, deep convergence is obtained in under 90 minutes.
The solution of transonic flow over the Common Research Model wing-body geometry with
grids with up to 150 million nodes exhibits the expected grid
convergence behavior. This case was completed as part of the Fifth AIAA Drag Prediction Workshop,
with the algorithm producing solutions that compare favourably with several widely used flow solvers.
The algorithm is shown to scale well on over 6000 processors. The results demonstrate the effectiveness of the SBP-SAT
spatial discretization, which can be readily extended to high order, in combination with
the Newton-Krylov-Schur iterative method to produce a powerful parallel algorithm for the numerical solution of
the Reynolds-averaged Navier-Stokes equations.
The algorithm can efficiently solve the flow over a range of clean geometries, making it suitable for
use at the core of an optimization algorithm.
|
150 |
NEAR WALL SHEAR STRESS MODIFICATION USING AN ACTIVE PIEZOELECTRIC NANOWIRE SURFACEGuskey, Christopher R. 01 January 2013 (has links)
An experimental study was conducted to explore the possible application of dynamically actuated nanowires to effectively disturb the wall layer in fully developed, turbulent channel flow. Actuated nanowires have the potential to be used for the mixing and filtering of chemicals, enhancing convective heat transfer and reducing drag. The first experimental evidence is presented suggesting it is possible to manipulate and subsequently control turbulent flow structures with active nanowires. An array of rigid, ultra-long (40 μm) TiO2 nanowires was fabricated and installed in the bounding wall of turbulent channel flow then oscillated using an attached piezoelectric actuator. Flow velocity and variance measurements were taken using a single sensor hot-wire with results indicating the nanowire array significantly influenced the flow by increasing the turbulent kinetic energy through the entire wall layer.
|
Page generated in 0.0784 seconds