• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 18
  • 4
  • Tagged with
  • 63
  • 38
  • 29
  • 17
  • 13
  • 13
  • 13
  • 13
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Experimentelle Untersuchung und physikalische Beschreibung der Schichtenströmung in horizontalen Kanälen

Stäbler, Thomas Daniel, January 2007 (has links)
Stuttgart, Univ., Diss., 2007.
12

Chaos und Turbulenz in der Belousov-Zhabotinsky-Reaktion

Woltering, Matthias. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Dortmund.
13

Böenmodellierung und Lastabminderung für ein flexibles Flugzeug

Teufel, Patrick. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Stuttgart.
14

Turbulenter Austausch, Bildung und Wachstum atmosphärischer Partikel über einem Fichtenwald

Held, Andreas. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Münster (Westfalen).
15

Numerical study of a continuous casting process with electromagnetic brake

Miao, Xincheng 19 June 2014 (has links) (PDF)
This dissertation investigates the effect of electromagnetic braking and gas injection on the fluid flow in a continuous casting slab mold numerically and makes verifications on basis of a small Liquid Metal Model for Continuous Casting of steel (mini-LIMMCAST). Numerical calculations were performed by means of the software package CFX with an implemented RANS-SST turbulence model. The non-isotropic nature of the MHD turbulence was taken into account by specific modifications of the turbulence model. The numerical results were validated by flow measurements at the mini-LIMMCAST facility. Numerical simulations disclose the damping effect on the flow closely depending on the wall conductance ratio. In addition, specific modifications of the turbulence model play a crucial role in reconstructing the peculiar phenomenon of an excitation of nonsteady, nonisotropic, large-scale flow perturbations caused by the application of the DC magnetic field.
16

Supernova-driven turbulence and magnetic field amplification in disk galaxies

Gressel, Oliver January 2008 (has links)
Supernovae are known to be the dominant energy source for driving turbulence in the interstellar medium. Yet, their effect on magnetic field amplification in spiral galaxies is still poorly understood. Analytical models based on the uncorrelated-ensemble approach predicted that any created field will be expelled from the disk before a significant amplification can occur. By means of direct simulations of supernova-driven turbulence, we demonstrate that this is not the case. Accounting for vertical stratification and galactic differential rotation, we find an exponential amplification of the mean field on timescales of 100Myr. The self-consistent numerical verification of such a “fast dynamo” is highly beneficial in explaining the observed strong magnetic fields in young galaxies. We, furthermore, highlight the importance of rotation in the generation of helicity by showing that a similar mechanism based on Cartesian shear does not lead to a sustained amplification of the mean magnetic field. This finding impressively confirms the classical picture of a dynamo based on cyclonic turbulence. / Supernovae sind bekanntermaßen die dominante treibende Energiequelle für Turbulenz im interstellaren Medium. Dennoch ist ihre Auswirkung auf die Verstärkung von Magnetfeldern in Spiralgalaxien weitestgehend unverstanden. Analytische Modelle, die auf der Annahme eines unkorrelierten Ensembles beruhen, sagen voraus, dass das erzeugte Feld aus der galaktischen Scheibe herausgedrängt wird bevor eine substantielle Verstärkung erfolgen kann. Mithilfe numerischer Simulationen supernovagetriebener Turbulenz zeigen wir, dass dies nicht der Fall ist. Unter Berücksichtigung einer vertikalen Schichtung und differentieller galaktischer Rotation beobachten wir eine exponentielle Verstärkung des mittleren Magnetfeldes auf einer Zeitskala von 100 Mio. Jahren. Diese selbstkonsistente numerische Bestätigung eines “schnellen Dynamos” erlaubt es, die beobachteten starken Magnetfelder in jungen Galaxien zu erklären. Darüberhinaus stellen wir die Wichtigkeit der Rotation bei der Erzeugung von Helizität heraus, indem wir zeigen, dass ein ähnlicher Effekt basierend auf kartesischer Scherung nicht zu einer Verstärkung des mittleren Magnetfeldes führt. Dies bestätigt eindrucksvoll das klassische Bild zyklonischer Turbulenz.
17

Interstellar turbulence driven by magneto-rotational instability

Dziourkevitch, Natalia January 2005 (has links)
Origin and symmetry of the observed global magnetic fields in galaxies are not fully understood. We intend to clarify the question of the magnetic field origin and investigate the global action of the magneto-rotational instability (MRI) in galactic disks with the help of 3D global magneto-hydrodynamical (MHD) simulations. The calculations were done with the time-stepping ZEUS 3D code using massive parallelization. The alpha-Omega dynamo is known to be one of the most efficient mechanisms to reproduce the observed global galactic fields. The presence of strong turbulence is a pre-requisite for the alpha-Omega dynamo generation of the regular magnetic fields. The observed magnitude and spatial distribution of turbulence in galaxies present unsolved problems to theoreticians. The MRI is known to be a fast and powerful mechanism to generate MHD turbulence and to amplify magnetic fields. <br><br> We find that the critical wavelength increases with the increasing of magnetic fields during the simulation, transporting the energy from critical to larger scales. The final structure, if not disrupted by supernovae explosions, is the structure of `thin layers' of thickness of about 100 pcs. An important outcome of all simulations is the magnitude of the horizontal components of the Reynolds and Maxwell stresses. The result is that the MRI-driven turbulence is magnetic-dominated: its magnetic energy exceeds the kinetic energy by a factor of 4. The Reynolds stress is small and less than 1% of the Maxwell stress. <br><br> The angular momentum transport is thus completely dominated by the magnetic field fluctuations. The volume-averaged pitch angle is always negative with a magnitude of about -30. The non-saturated MRI regime is lasting sufficiently long to fill the time between the galactic encounters, independently of strength and geometry of the initial field. Therefore, we may claim the observed pitch angles can be due to MRI action in the gaseous galactic disks. The MRI is also shown to be a very fast instability with e-folding time proportional to the time of one rotation. Steep rotation curves imply a stronger growth for the magnetic energy due to MRI. The global e-folding time is from 44 Myr to 100 Myr depending on the rotation profile. Therefore, MRI can explain the existence of rather large magnetic field in very young galaxies. We also have reproduced the observed rms values of velocities in the interstellar turbulence as it was observed in NGC 1058. We have shown with the simulations that the averaged velocity dispersion of about 5 km/s is a typical number for the MRI-driven turbulence in galaxies, which agrees with observations. The dispersion increases outside of the disk plane, whereas supernovae-driven turbulence is found to be concentrated within the disk. In our simulations the velocity dispersion increases a few times with the heights. <br><br> An additional support to the dynamo alpha-effect in the galaxies is the ability of the MRI to produce a mix of quadrupole and dipole symmetries from the purely vertical seed fields, so it also solves the seed-fields problem of the galactic dynamo theory. The interaction of magneto-rotational instability and random supernovae explosions remains an open question. It would be desirable to run the simulation with the supernovae explosions included. They would disrupt the calm ring structure produced by global MRI, may be even to the level when we can no longer blame MRI to be responsible for the turbulence. / Die Beobachtung polarisierter Synchrotronstrahlung mit modernen Radioteleskopen zeigen die Existenz von großskaligen Magnetfeldern in Galaxien. Mit den ständig verbesserten Beobachtungsinstrumenten findet man Magnetfelder in immer mehr Galaxien, so dass man annehmen kann, Magnetfelder treten mehr oder weniger in allen Galaxien auf. Selbst in sehr jungen Galaxien (damit weit entfernten) wurden schon Magnetfelder von einigen mikroG gefunden.<br> Eine mögliche Erklärung für die Entstehung der Magnetfeldern ist die Wirkung eines turbulenten Dynamos. Neben Supernova-Explosionen können magnetische Instabilitäten eine Quelle für die Turbulenz im interstellaren Medium sein. So werden Galaxien bei Anwesenheit eines schwachen Magnetfeldes auf Grund der &quot;Magneto-Rotations-Instabilität&quot; (MRI) turbulent. Die globale Entwicklung des interstellaren Gases in Galaxien unter Wirkung der MRI ist in der vorliegenden Arbeit betrachtet worden.<br> Mit drei-dimensionalen numerischen Simulationen auf großen Clusterrechnern wurde die zeitliche Entwicklung des Geschwindigkeitsfeldes und der Magnetfelder untersucht. Für die extrem rechenintensiven globalen Modelle wurde ein hochgradig parallelisierbares Rechenprogramm zur Lösung der MHD-Gleichungen an die Problemstellung angepasst, in der Rechenzeit optimiert und ausführlich getestet. <br> Es konnte erstmalig die zeitliche Entwicklung des interstellaren Gases unter dem Einfluss eines schwachen Magnetfeldes über mehrere Milliarden Jahre verfolgt werden. In der galaktischen Scheibe entwickelt sich Turbulenz mit einer Geschwindigkeitsdispersion von einigen km/s und großskalige Magnetfelder von einigen mikroG, genau wie in realen Galaxien beobachtet. Damit konnte der Nachweis erbracht werden, dass das interstellare Gas durch Wirkung der MRI auch bei geringer Sternaktivität Turbulenz entwickelt, wie es in einigen ruhigen Galaxien auch beobachtet wird.<br> Ein anderes wichtiges Resultat ist die Entstehung großskaliger Magnetfelder aus kleinskaligen Strukturen in der Art eines turbulenten Dynamos. Die Wachstumsrate der magnetischen Energie geht bei diesem Prozess mit der Umlaufzeit, schnell genug um auch Magnetfelder mit einigen mikroG in sehr jungen Galaxien zu erreichen.<br> Die Entstehung von Magnetfeldern aus der MRI löst auch die bisher ungeklärte Frage nach der Geometrie der Saatfelder für turbulente Dynamos.
18

The relation between interstellar turbulence and star formation

Klessen, Ralf S. January 2004 (has links)
Eine der zentralen Fragestellungen der modernen Astrophysik ist es, unser Verständnis fuer die Bildung von Sternen und Sternhaufen in unserer Milchstrasse zu erweitern und zu vertiefen. Sterne entstehen in interstellaren Wolken aus molekularem Wasserstoffgas. In den vergangenen zwanzig bis dreißig Jahren ging man davon aus, dass der Prozess der Sternentstehung vor allem durch das Wechselspiel von gravitativer Anziehung und magnetischer Abstossung bestimmt ist. Neuere Erkenntnisse, sowohl von Seiten der Beobachtung als auch der Theorie, deuten darauf hin, dass nicht Magnetfelder, sondern Überschallturbulenz die Bildung von Sternen in galaktischen Molekülwolken bestimmt.<br /> <br /> Diese Arbeit fasst diese neuen Überlegungen zusammen, erweitert sie und formuliert eine neue Theorie der Sternentstehung die auf dem komplexen Wechselspiel von Eigengravitation des Wolkengases und der darin beobachteten Überschallturbulenz basiert. Die kinetische Energie des turbulenten Geschwindigkeitsfeldes ist typischerweise ausreichend, um interstellare Gaswolken auf großen Skalen gegen gravitative Kontraktion zu stabilisieren. Auf kleinen Skalen jedoch führt diese Turbulenz zu starken Dichtefluktuationen, wobei einige davon die lokale kritische Masse und Dichte für gravitativen Kollaps überschreiten koennen. Diese Regionen schockkomprimierten Gases sind es nun, aus denen sich die Sterne der Milchstrasse bilden. Die Effizienz und die Zeitskala der Sternentstehung hängt somit unmittelbar von den Eigenschaften der Turbulenz in interstellaren Gaswolken ab. Sterne bilden sich langsam und in Isolation, wenn der Widerstand des turbulenten Geschwindigkeitsfeldes gegen gravitativen Kollaps sehr stark ist. Überwiegt hingegen der Einfluss der Eigengravitation, dann bilden sich Sternen in dichten Gruppen oder Haufen sehr rasch und mit grosser Effizienz. <br /> <br /> Die Vorhersagungen dieser Theorie werden sowohl auf Skalen einzelner Sternentstehungsgebiete als auch auf Skalen der Scheibe unserer Milchstrasse als ganzes untersucht. Es zu erwarten, dass protostellare Kerne, d.h. die direkten Vorläufer von Sternen oder Doppelsternsystemen, eine hochgradig dynamische Zeitentwicklung aufweisen, und keineswegs quasi-statische Objekte sind, wie es in der Theorie der magnetisch moderierten Sternentstehung vorausgesetzt wird. So muss etwa die Massenanwachsrate junger Sterne starken zeitlichen Schwankungen unterworfen sein, was wiederum wichtige Konsequenzen für die statistische Verteilung der resultierenden Sternmassen hat. Auch auf galaktischen Skalen scheint die Wechselwirkung von Turbulenz und Gravitation maßgeblich. Der Prozess wird hier allerdings noch zusätzlich moduliert durch chemische Prozesse, die die Heizung und Kühlung des Gases bestimmen, und durch die differenzielle Rotation der galaktischen Scheibe. Als wichtigster Mechanismus zur Erzeugung der interstellaren Turbulenz lässt sich die Überlagerung vieler Supernova-Explosionen identifizieren, die das Sterben massiver Sterne begleiten und große Mengen an Energie und Impuls freisetzen. Insgesamt unterstützen die Beobachtungsbefunde auf allen Skalen das Bild der turbulenten, dynamischen Sternentstehung, so wie es in dieser Arbeit gezeichnet wird. / Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that the star formation process is primarily controlled by the interplay between gravity and magnetostatic support, modulated by neutral-ion drift. Recently, however, both observational and numerical work has begun to suggest that supersonic interstellar turbulence rather than magnetic fields controls star formation. <br /> <br /> This review begins with a historical overview of the successes and problems of both the classical dynamical theory of star formation, and the standard theory of magnetostatic support from both observational and theoretical perspectives. We then present the outline of a new paradigm of star formation based on the interplay between supersonic turbulence and self-gravity. Supersonic turbulence can provide support against gravitational collapse on global scales, while at the same time it produces localized density enhancements that allow for collapse on small scales. The efficiency and timescale of stellar birth in Galactic gas clouds strongly depend on the properties of the interstellar turbulent velocity field, with slow, inefficient, isolated star formation being a hallmark of turbulent support, and fast, efficient, clustered star formation occurring in its absence. <br /> <br /> After discussing in detail various theoretical aspects of supersonic turbulence in compressible self-gravitating gaseous media relevant for star forming interstellar clouds, we explore the consequences of the new theory for both local star formation and galactic scale star formation. The theory predicts that individual star-forming cores are likely not quasi-static objects, but dynamically evolving. Accretion onto these objects will vary with time and depend on the properties of the surrounding turbulent flow. This has important consequences for the resulting stellar mass function. Star formation on scales of galaxies as a whole is expected to be controlled by the balance between gravity and turbulence, just like star formation on scales of individual interstellar gas clouds, but may be modulated by additional effects like cooling and differential rotation. The dominant mechanism for driving interstellar turbulence in star-forming regions of galactic disks appears to be supernovae explosions. In the outer disk of our Milky Way or in low-surface brightness galaxies the coupling of rotation to the gas through magnetic fields or gravity may become important.
19

Untersuchungen zur Abhängigkeit der oberflächennahen Strömungen von den Prozessparametern beim Stranggießen

Sahebkar Moghaddam, Bahman 14 July 2009 (has links) (PDF)
In der vorliegenden Arbeit wurden 3D-Strömungszustände und die Bewegung an der Badoberfläche in Abhängigkeit von den Betriebsparametern mit der LDA-Methode im 1:2 Modell einer Stranggießkokille mit Fr-Zahl als Ähnlichkeitskriterium untersucht. Auf Basis der Messdaten wurde der obere Kokillenbereich in 7 Teilräumen stromabwärts unterteilt. Der Verlauf der Freistrahlausbreitung wurde durch eine Exponentialfunktion beschrieben. Nahe am Tauchrohraustritt wurde das Medium sowohl in den austretenden Strahl als auch in das Tauchrohr hinein eingesaugt. Die Frequenz und die Amplitude der Oberflächenschwankungen wurden nach der Leitfähigkeitsmethode gemessen. Dort dominierten drei Frequenzbereiche. In der Strömungsgeschwindigkeit beim Austritt des turbulenten Freistrahles wurden auch entsprechende nieder- und hochfrequente Anteile gemessen. Die Badoberflächenschwankungen wurden an vier Positionen gleichzeitig bestimmt. Mit steigender Fr-Zahl nahm der Mittelwert der Badoberflächenschwankung zu. Zwischen den Fr-Zahlen und den normierten Amplituden der Badoberflächenschwankungen (Mittelwert der Amplitude / hydraulischer Durchmesser der Tauchrohraustrittsfläche), konnte ein linearer Zusammenhang festgestellt werden. Die numerischen Ergebnisse (Fluent), die mit unterschiedlich definierten Randbedingungen des Strahlaustrittes berechnet wurden, ergaben eine gute Übereinstimmung mit den experimentellen Ergebnissen, wenn die Randbedingungen am Tauchrohraustritt auf experimentellen Messdaten basierten. Liegen diese Messdaten nicht vor, dann kann das Ergebnis einer numerischen Untersuchung verbessert werden, indem die stromaufwärts liegenden Systemteile in die Rechensimulation einbezogen werden.
20

Determination of characteristic turbulence length scales from large-eddy simulation of the convective planetary boundary layer

Helmert, Jürgen 28 November 2004 (has links) (PDF)
Turbulente Austauschprozesse in der atmosphärischen Grenzschicht spielen eine Schlüsselrolle beim vertikalen Impuls-, Energie- und Stofftransport in der Erdatmosphäre. In meso- und globalskaligen Atmosphärenmodellen sind turbulente Austauschprozesse jedoch subskalig und müssen unter Verwendung geeigneter Schliessungsansätze parametrisiert werden. Hierbei spielt die Spezifikation der charakteristischen Turbulenzlängenskala in Abhängigkeit vom Stabilitätszustand der Atmosphäre eine entscheidende Rolle. Gegenwärtig verwendete Ansätze, die auf der Verwendung der turbulenten Mischungslänge für neutrale Schichtung sowie dimensionsloser Stabilitätsfunktionen basieren, zeigen vor allem Defizite im oberen Bereich der konvektiven Grenzschicht sowie in der Entrainmentzone, wo starke vertikale Gradienten auftreten. In der vorliegenden Arbeit wurden hochaufgelöste dreidimensionale Grobstruktursimulationen der trockenen und feuchten Grenzschicht für ein weites Spektrum von Labilitätsbedingungen durchgeführt. Erste und zweite Momente atmosphärischer Strömungsvariablen wurden aus den simulierten hydro- und thermodynamischen Feldern berechnet und diskutiert. Die Spektraleigenschaften turbulenter Fluktuationen der Strömungsvariablen, das raumzeitliche Verhalten kohärenter Strukturen sowie charakteristische Turbulenzlängenskalen wurden abgeleitet. Eine Verifizierung der charakteristischen Turbulenzlängenskalen erfolgte durch Vergleich mit Ergebnissen früherer numerischer Simulationen, mit Turbulenzmessungen in der atmosphärischen Grenzschicht sowie mit Laborexperimenten. Mit Hilfe der nichtlinearen Datenmodellierung wurden leicht verwendbare Approximationen der charakteristischen Turbulenzlängenskalen abgeleitet und deren statistische Signifikanz diskutiert. Unter Verwendung dieser Approximationen wurde ein existierendes Parametrisierungsmodell revidiert und mit Hilfe von Grobstruktursimulationen verifiziert. Desweiteren wurde der Einfluß der turbulenten Mischungslänge auf die Prognose mesokaliger Felder untersucht. Hierzu wurde mit dem Lokal-Modell des Deutschen Wetterdienstes eine entsprechende Sensitivitätsstudie durchgeführt. Anhand von Satellitendaten und Analysedaten aus der 4D-Datenassimilation wurden die Simulationsergebnisse verifiziert.

Page generated in 0.1048 seconds