• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Scientific Way to Simulate Pattern Formation in Reaction-Diffusion Equations

Cleary, Erin 09 May 2013 (has links)
For a uniquely defined subset of phase space, solutions of non-linear, coupled reaction-diffusion equations may converge to heterogeneous steady states, organic in appearance. Hence, many theoretical models for pattern formation, as in the theory of morphogenesis, include the mechanics of reaction-diffusion equations. The standard method of simulation for such pattern formation models does not facilitate reproducibility of results, or the verification of convergence to a solution of the problem via the method of mesh refinement. In this thesis we explore a new methodology circumventing the aforementioned issues, which is independent of the choice of programming language. While the new method allows more control over solutions, the user is required to make more choices, which may or may not have a determining effect on the nature of resulting patterns. In an attempt to quantify the extent of the possible effects, we study heterogeneous steady states for two well known reaction-diffusion models, the Gierer-Meinhardt model and the Schnakenberg model. / Alexander Graham Bell Canada Graduate Scholarship provides financial support to high calibre scholars who are engaged in master's or doctoral programs in the natural sciences or engineering. / Natural Sciences and Engineering Research Council of Canada
2

Turing's model for pattern formation

Forsström, Oskar, Falgén Nikula, Oskar January 2022 (has links)
In an attempt to describe how patterns emerge in biological systems, Alan Turing proposed a mathematical model encapsulating the properties of such processes. It details a partial differential equation governing the dynamics of two or more substances, called morphogens, reacting and diffusing in a specific manner, in turn generating what has now come to be denoted as Turing patterns. In recent years, evidence has accumulated to support Turing's claim and it has been proposed that it is responsible for the dynamical characteristics of phenomena such as skin pigmentation and branching of lungs in vertebrates. The aim of this paper is to study how the choice of model parameters and reaction kinetics influence the nature of patterns generated, as well as explore how boundary control can be employed to generate pre-defined patterns and the efficiency of this procedure. To simulate the patterns, the differential equation is solved in Python by means of a spectral method using discretized space and time domains. The model parameters were then studied to try to gain insight in their effects on the patterns yielded. The boundary control was implemented in MATLAB using a difference method. The metric used for efficiency was taken to be the energy expenditure of the boundary cells. The complex dynamics of the studied systems make it difficult to draw valuable conclusions on the influence of the parameters, but the results support the expected characteristics of the models used. The efficiency of the pattern generation is deemed to be closely related to the amount of boundary control utilized.
3

Population Dynamics In Patchy Landscapes: Steady States and Pattern Formation

Zaker, Nazanin 11 June 2021 (has links)
Many biological populations reside in increasingly fragmented landscapes, which arise from human activities and natural causes. Landscape characteristics may change abruptly in space and create sharp transitions (interfaces) in landscape quality. How patchy landscape affects ecosystem diversity and stability depends, among other things, on how individuals move through the landscape. Individuals adjust their movement behaviour to local habitat quality and show preferences for some habitat types over others. In this dissertation, we focus on how landscape composition and the movement behaviour at an interface between habitat patches of different quality affects the steady states of a single species and a predator-prey system. First, we consider a model for population dynamics in a habitat consisting of two homogeneous one-dimensional patches in a coupled ecological reaction-diffusion equation. Several recent publications by other authors explored how individual movement behaviour affects population-level dynamics in a framework of reaction-diffusion systems that are coupled through discontinuous boundary conditions. The movement between patches is incorporated into the interface conditions. While most of those works are based on linear analysis, we study positive steady states of the nonlinear equations. We establish the existence, uniqueness and global asymptotic stability of the steady state, and we classify their qualitative shape depending on movement behaviour. We clarify the role of nonrandom movement in this context, and we apply our analysis to a previous result where it was shown that a randomly diffusing population in a continuously varying habitat can exceed the carrying capacity at steady state. In particular, we apply our results to study the question of why and under which conditions the total population abundance at steady state may exceed the total carrying capacity of the landscape. Secondly, we model population dynamics with a predator-prey system in a coupled ecological reaction-diffusion equation in a heterogeneous landscape to study Turing patterns that emerge from diffusion-driven instability (DDI). We derive the DDI conditions, which consist of necessary and sufficient conditions for initiation of spatial patterns in a one-dimensional homogeneous landscape. We use a finite difference scheme method to numerically explore the general conditions using the May model, and we present numerical simulations to illustrate our results. Then we extend our studies on Turing-pattern formation by considering a predator-prey system on an infinite patchy periodic landscape. The movement between patches is incorporated into the interface conditions that link the reaction-diffusion equations between patches. We use a homogenization technique to obtain an analytically tractable approximate model and determine Turing-pattern formation conditions. We use numerical simulations to present our results from this approximation method for this model. With this tool, we then explore how differential movement and habitat preference of both species in this model (prey and predator) affect DDI.
4

Pattern Formation in Cellular Automaton Models - Characterisation, Examples and Analysis / Musterbildung in Zellulären Automaten Modellen - Charakterisierung, Beispiele und Analyse

Dormann, Sabine 26 October 2000 (has links)
Cellular automata (CA) are fully discrete dynamical systems. Space is represented by a regular lattice while time proceeds in finite steps. Each cell of the lattice is assigned a state, chosen from a finite set of "values". The states of the cells are updated synchronously according to a local interaction rule, whereby each cell obeys the same rule. Formal definitions of deterministic, probabilistic and lattice-gas CA are presented. With the so-called mean-field approximation any CA model can be transformed into a deterministic model with continuous state space. CA rules, which characterise movement, single-component growth and many-component interactions are designed and explored. It is demonstrated that lattice-gas CA offer a suitable tool for modelling such processes and for analysing them by means of the corresponding mean-field approximation. In particular two types of many-component interactions in lattice-gas CA models are introduced and studied. The first CA captures in abstract form the essential ideas of activator-inhibitor interactions of biological systems. Despite of the automaton´s simplicity, self-organised formation of stationary spatial patterns emerging from a randomly perturbed uniform state is observed (Turing pattern). In the second CA, rules are designed to mimick the dynamics of excitable systems. Spatial patterns produced by this automaton are the self-organised formation of spiral waves and target patterns. Properties of both pattern formation processes can be well captured by a linear stability analysis of the corresponding nonlinear mean-field (Boltzmann) equations.

Page generated in 0.0977 seconds