Spelling suggestions: "subject:"lattice gas cellular automata""
1 |
Model-based Comparison of Cell Density-dependent Cell Migration StrategiesHatzikirou, H., Böttger, K., Deutsch, A. 17 April 2020 (has links)
Here, we investigate different cell density-dependent migration strategies. In particular, we consider strategies which differ in the precise regulation of transitions between resting and motile phenotypes. We develop a lattice-gas cellular automaton (LGCA) model for each migration strategy. Using a mean-field approximation we quantify the corresponding spreading dynamics at the cell population level. Our results allow for the prediction of cell population spreading based on experimentally accessible single cell migration parameters.
|
2 |
Pattern Formation in Cellular Automaton Models - Characterisation, Examples and Analysis / Musterbildung in Zellulären Automaten Modellen - Charakterisierung, Beispiele und AnalyseDormann, Sabine 26 October 2000 (has links)
Cellular automata (CA) are fully discrete dynamical systems. Space is represented by a regular lattice while time proceeds in finite steps. Each cell of the lattice is assigned a state, chosen from a finite set of "values". The states of the cells are updated synchronously according to a local interaction rule, whereby each cell obeys the same rule. Formal definitions of deterministic, probabilistic and lattice-gas CA are presented. With the so-called mean-field approximation any CA model can be transformed into a deterministic model with continuous state space. CA rules, which characterise movement, single-component growth and many-component interactions are designed and explored. It is demonstrated that lattice-gas CA offer a suitable tool for modelling such processes and for analysing them by means of the corresponding mean-field approximation. In particular two types of many-component interactions in lattice-gas CA models are introduced and studied. The first CA captures in abstract form the essential ideas of activator-inhibitor interactions of biological systems. Despite of the automaton´s simplicity, self-organised formation of stationary spatial patterns emerging from a randomly perturbed uniform state is observed (Turing pattern). In the second CA, rules are designed to mimick the dynamics of excitable systems. Spatial patterns produced by this automaton are the self-organised formation of spiral waves and target patterns. Properties of both pattern formation processes can be well captured by a linear stability analysis of the corresponding nonlinear mean-field (Boltzmann) equations.
|
Page generated in 0.1131 seconds