Spelling suggestions: "subject:"lutte polynomial"" "subject:"lutte dolynomial""
1 |
Computing the Tutte Polynomial of hyperplane arrangementsGeldon, Todd Wolman 23 October 2009 (has links)
We are studying the Tutte Polynomial of hyperplane arrangements. We discuss some previous work done to compute these polynomials. Then we explain our method to calculate the Tutte Polynomial of some arrangements more efficiently. We next discuss the details of the program used to do the calculation. We use this program and present the actual Tutte Polynomials calculated for the arrangements E6, E7, and E8. / text
|
2 |
Polytopal and structural aspects of matroids and related objectsCameron, Amanda January 2017 (has links)
This thesis consists of three self-contained but related parts. The rst is focussed on polymatroids, these being a natural generalisation of matroids. The Tutte polynomial is one of the most important and well-known graph polynomials, and also features prominently in matroid theory. It is however not directly applicable to polymatroids. For instance, deletion-contraction properties do not hold. We construct a polynomial for polymatroids which behaves similarly to the Tutte polynomial of a matroid, and in fact contains the same information as the Tutte polynomial when we restrict to matroids. The second section is concerned with split matroids, a class of matroids which arises by putting conditions on the system of split hyperplanes of the matroid base polytope. We describe these conditions in terms of structural properties of the matroid, and use this to give an excluded minor characterisation of the class. In the nal section, we investigate the structure of clutters. A clutter consists of a nite set and a collection of pairwise incomparable subsets. Clutters are natural generalisations of matroids, and they have similar operations of deletion and contraction. We introduce a notion of connectivity for clutters that generalises that of connectivity for matroids. We prove a splitter theorem for connected clutters that has the splitter theorem for connected matroids as a special case: if M and N are connected clutters, and N is a proper minor of M, then there is an element in E(M) that can be deleted or contracted to produce a connected clutter with N as a minor.
|
3 |
Combinatoire des algèbres de Hopf basées sur le principe sélection/quotient / Combinatorial Hopf algebras based on the selection/quotient ruleHoàng, Nghia Nguyên 23 September 2014 (has links)
Dans cette thèse, nous nous concentrons sur l’étude des algèbres de Hopf de type I, à savoir de type sélection/quotient. Nous présentons une structure d’algèbre de Hopf sur l’espace vectoriel engendré par les mots tassés avec du coproduit sélection/quotient. C’est un algèbre libre sur ses mots irreductible. Nous montrons que la série de Hilbert de cette algèbre de Hopf. Nous donnons une nouvelle preuve de l’universalité du polynôme de Tutte pour les matroïdes.Cette preuve utilise des caractères appropriés de l’algèbre de Hopf des matroïdes introduite par Schmitt (1994). Nous montrons que ces caractères sont des solutions des équations différentielles du même type que les équations différentielles utilisées pour décrire le flux du groupe de renormalisation en théorie quantique de champs. Cette approche nous permet aussi de démontrer,d’une manière différente, une formule de convolution du polynôme de Tutte des matroïdes,formule publiée par Kook, Reiner et Stanton (1999) et par Etienne et Las Vergnas (1998). Dans la dernière partie, nous définissons une algèbre de Hopf non-commutative de graphes. Lanon-commutativité du produit est obtenue grâce à des étiquettes entières distinctes associées aux arrêtes du graphe. Cette idée est inspirée de certaines techniques analytiques utilisées en renormalisation en théories quantiques des champs. Nous définissons ensuite une structure d’algèbre de Hopf, avec un coproduit basé sur une règle de type sélection/quotient, et nous démontrons la coassociativité de ce coproduit. Nous analysons finalement la structure de quadri-cogèbre et les structures codendriformes associées. / In this thesis, we focus on the study of Hopf algebras of type I, namely the selection/quotient.We study the new Hopf algebra structure on the vector space spanned by packed words. Weshow that this algebra is free on its irreducible packed words. We also compute the Hilbertseries of this Hopf algebra.We provide a new way to obtain the universality of the Tutte polynomial for matroids. Thisproof uses appropriate characters of Hopf algebra of matroids, algebra introduced by Schmitt(1994). We show that these Hopf algebra characters are solutions of some differential equationswhich are of the same type as the differential equations used to describe the renormalizationgroup flow in quantum field theory. This approach allows us to also prove, in a different way, amatroid Tutte polynomial convolution formula published by Kook, Reiner and Stanton (1999)and by Etienne and Las Vergnas (1998).We define a non-commutative Hopf algebra of graphs. The non-commutativity of the productis obtained thanks to some discrete labels associated to the graph edges. This idea is inspiredfrom certain analytic techniques used in quantum field theory renormalization. We then definea Hopf algebra structure, with a coproduct based on a selection/quotient rule, and prove thecoassociativity of this coproduct. We analyze the associated quadri-coalgebra and codendrifromstructures.
|
4 |
Quantum Algorithms For: Quantum Phase Estimation, Approximation Of The Tutte Polynomial And Black-box StructuresAhmadi, Hamad 01 January 2012 (has links)
In this dissertation, we investigate three different problems in the field of Quantum computation. First, we discuss the quantum complexity of evaluating the Tutte polynomial of a planar graph. Furthermore, we devise a new quantum algorithm for approximating the phase of a unitary matrix. Finally, we provide quantum tools that can be utilized to extract the structure of black-box modules and algebras. While quantum phase estimation (QPE) is at the core of many quantum algorithms known to date, its physical implementation (algorithms based on quantum Fourier transform (QFT) ) is highly constrained by the requirement of high-precision controlled phase shift operators, which remain difficult to realize. In the second part of this dissertation, we introduce an alternative approach to approximately implement QPE with arbitrary constantprecision controlled phase shift operators. The new quantum algorithm bridges the gap between QPE algorithms based on QFT and Kitaev’s original approach. For approximating the eigenphase precise to the nth bit, Kitaev’s original approach does not require any controlled phase shift operator. In contrast, QPE algorithms based on QFT or approximate QFT require controlled phase shift operators with precision of at least Pi/2n. The new approach fills the gap and requires only arbitrary constant-precision controlled phase shift operators. From a physical implementation viewpoint, the new algorithm outperforms Kitaev’s approach. iii The other problem we investigate relates to approximating the Tutte polynomial. We show that the problem of approximately evaluating the Tutte polynomial of triangular graphs at the points (q, 1/q) of the Tutte plane is BQP-complete for (most) roots of unity q. We also consider circular graphs and show that the problem of approximately evaluating the Tutte polynomial of these graphs at the point (e 2πi/5 ,e−2πi/5 ) is DQC1-complete and at points (q k , 1 + 1−q−k (q 1/2−q−1/2) 2 ) for some integer k is in BQP. To show that these problems can be solved by a quantum computer, we rely on the relation of the Tutte polynomial of a planar G graph with the Jones and HOMFLY polynomial of the alternating link D(G) given by the medial graph of G. In the case of our graphs the corresponding links are equal to the plat and trace closures of braids. It is known how to evaluate the Jones and HOMFLY polynomial for closures of braids. To establish the hardness results, we use the property that the images of the generators of the braid group under the irreducible Jones-Wenzl representations of the Hecke algebra have finite order. We show that for each braid b we can efficiently construct a braid ˜b such that the evaluation of the Jones and HOMFLY polynomials of their closures at a fixed root of unity leads to the same value and that the closures of ˜b are alternating links. The final part of the dissertation focuses on finding the structure of a black-box module or algebra. Suppose we are given black-box access to a finite module M or algebra over a finite ring R, and a list of generators for M and R. We show how to find a linear basis and structure constants for M in quantum poly(log |M|) time. This generalizes a recent quantum algorithm of Arvind et al. which finds a basis representation for rings. We then show that iv our algorithm is a useful primitive allowing quantum computers to determine the structure of a finite associative algebra as a direct sum of simple algebras. Moreover, it solves a wide variety of problems regarding finite modules and rings. Although our quantum algorithm is based on Abelian Fourier transforms, it solves problems regarding the multiplicative structure of modules and algebras, which need not be commutative. Examples include finding the intersection and quotient of two modules, finding the additive and multiplicative identities in a module, computing the order of an module, solving linear equations over modules, deciding whether an ideal is maximal, finding annihilators, and testing the injectivity and surjectivity of ring homomorphisms. These problems appear to be exponentially hard classically.
|
5 |
Combinatoire du polynôme de Tutte et des cartes planaires / Combinatorics of the Tutte polynomial and planar mapsCourtiel, Julien 03 October 2014 (has links)
Cette thèse porte sur le polynôme de Tutte, étudié selon différents points de vue. Dans une première partie, nous nous intéressons à l’énumération des cartes planaires munies d’une forêt couvrante, ici appelées cartes forestières, avec un poids z par face et un poids u par composante non racine de la forêt. De manière équivalente, nous comptons selon le nombre de faces les cartes planaires C pondérées par TC(u + 1; 1), où TC désigne le polynôme de Tutte de C. Nous commençons par une caractérisation purement combinatoire de la série génératrice correspondante, notée F(z; u). Nous en déduisons que F(z; u) est différentiellement algébrique en z, c’est-à-dire que F satisfait une équation différentielle polynomiale selon z. Enfin, pour u ≥ -1, nous étudions le comportement asymptotique du n-ième coefficient de F(z; u). Nous observons une transition de phase en 0, avec notamment un régime très atypique en n-3 ln-2(n) pour u ϵ [-1; 0[, témoignant d’une nouvelle classe d’universalité pour les cartes planaires. Dans une seconde partie, nous proposons un cadre unificateur pour les différentes notions d’activités utilisées dans la littérature pour décrire le polynôme de Tutte.La nouvelle notion d’activité ainsi définie est appelée Δ-activité. Elle regroupe toutes les notions d’activité déjà connues et présente de belles propriétés, comme celle de Crapo qui définit une partition (adaptée à l’activité) du treillis des sous-graphes couvrants en intervalles. Nous conjecturons en dernier lieu que toute activité qui décrit le polynôme de Tutte et qui satisfait la propriété susmentionnée de Crapo peut être définie en termes de Δ-activités. / This thesis deals with the Tutte polynomial, studied from different points of view. In the first part, we address the enumeration of planar maps equipped with a spanning forest, here called forested maps, with a weight z per face and a weight u per non-root component of the forest. Equivalently, we count (with respect to the number of faces) the planar maps C weighted by TC(u + 1; 1), where TC is the Tutte polynomial of C.We begin by a purely combinatorial characterization of the corresponding generating function, denoted by F(z; u). We deduce from this that F(z; u) is differentially algebraic in z, that is, satisfies a polynomial differential equation in z. Finally, for u ≥ -1, we study the asymptotic behaviour of the nth coefficient of F(z; u).We observe a phase transition at 0, with a very unusual regime in n-3 ln-2(n) for u ϵ [-1; 0[, which testifiesa new universality class for planar maps. In the second part, we propose a framework unifying the notions of activity used in the literature to describe the Tutte polynomial. The new notion of activity thereby defined is called Δ-activity. It gathers all the notions of activities that were already known and has nice properties, as Crapo’s property that defines a partition of the lattice of the spanning subgraphs into intervals with respect to the activity. Lastly we conjecture that every activity that describes the Tutte polynomial and that satisfies Crapo’s property can be defined in terms of Δ-activity.
|
6 |
The complexity of graph polynomialsNoble, Steven D. January 1997 (has links)
This thesis examines graph polynomials and particularly their complexity. We give short proofs of two results from Gessel and Sagan (1996) which present new evaluations of the Tutte polynomial concerning orientations. A theorem of Massey et al (1997) gives an expression concerning the average size of a forest in a graph. We generalise this result to any simplicial complex. We answer a question posed by Kleinschmidt and Onn (1995) by showing that the language of partitionable simplicial complexes is in NP. We prove the following result concerning the complexity of the Tutte polynomial: Theorem 1. For any fixed k, there exists a polynomial time algorithm A, which will input any graph G, with tree-width at most k, and rational numbers x and y, and evaluate the Tutte polynomial, T(G;x,y). The rank generating function S of a graphic 2-polymatroid was introduced by Oxley and Whittle (1993). It has many similarities to the Tutte polynomial and we prove the following results. Theorem 2. Evaluating S at a fixed point (u,v) is #P-hard unless uv=1 when there is a polynomial time algorithm. Theorem 3. For any fixed k, there exists a polynomial time algorithm A, which will input any graph G, with tree-width at most k, and rational numbers u and v, and evaluate S(G;u,v). We consider a class of graphs $S$, which are those graphs which are obtainable from a graph with no edges using the unsigned version of Reidemeister moves. We examine the relationship between this class and other similarly defined classes such as the delta-wye graphs. There remain many open questions such as whether S contains every graph. However we have an invariant of the moves, based on the Tutte polynomial, which allows us to determine from which graph with no edges, if any, a particular graph can be obtained. Finally we consider a new polynomial on weighted graphs which is motivated by the study of weight systems on chord diagrams. We give three states model and a recipe theorem. An unweighted version of this polynomial is shown to contain as specialisations, a wide range of graph invariants, such as the Tutte polynomial, the polymatroid polynomial of Oxley and Whittle (1993) and the symmetric function generalisation of the chromatic polynomial introduced by Stanley (1995). We close with a discussion of complexity issues proving hardness results for very restricted classes of graphs.
|
Page generated in 0.0405 seconds