• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 22
  • 10
  • 5
  • 2
  • 1
  • Tagged with
  • 96
  • 96
  • 48
  • 35
  • 20
  • 20
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modeling of wet gas compression in twin-screw multiphase pump

Xu, Jian 15 May 2009 (has links)
Twin-screw multiphase pumps experience a severe decrease in efficiency, even the breakdown of pumping function, when operating under wet gas conditions. Additionally, field operations have revealed significant vibration and thermal issues which can lead to damage of the pump internals and expensive repairs and maintenance. There are limited models simulating the performance of twin-screw pump under these conditions. This project develops a pump-user oriented simulator to model the performance of twin-screw pumps under wet gas conditions. Experimental testing is conducted to verify the simulation results. Based on the simulations, an innovative solution is presented to improve the efficiency and prevent the breakdown of pumping function. A new model is developed based upon a previous Texas A&M twin-screw pump model. In this model, both the gas slip and liquid slip in the pump clearances are simulated. The mechanical model is coupled with a thermodynamic model to predict the pressure and temperature distribution along the screws. The comparison of experimental data and the predictions of both isothermal and non-isothermal models show a better match than previous models with Gas Volume Fraction (GVF) 95% and 98%. Compatible with the previous Texas A&M twin-screw pump model, this model can be used to simulate the twin-screw pump performance with GVF from 0% to 99%. Based on the effect of liquid viscosity, a novel solution is investigated with the newly developed model to improve the efficiency and reliability of twin-screw pump performance with GVF higher than 94%. The solution is to inject high viscosity liquid directly into the twin-screw pump. After the simulations of several different scenarios with various liquid injection rates and injection positions, we conclude that the volumetric efficiency increases with increasing liquid viscosity and injecting liquid in the suction is suggested.
12

Performance Evaluation and CFD Simulation of Multiphase Twin-Screw Pumps

Patil, Abhay 16 December 2013 (has links)
Twin-screw pumps are economical alternatives to the conventional multiphase system and are increasingly used in the oil and gas industry due to their versatility in transferring the multiphase mixture with varying Gas Void Fraction (GVF). Present work focuses on the experimental and numerical analysis of twin-screw pumps for different operating conditions. Experimental evaluation aims to understand steady state and transient behavior of twin-screw pumps. Detailed steady state evaluation helped form better understanding of twin-screw pumps under different operating conditions. A comparative study of twin-screw pumps and compressors contradicted the common belief that compressor efficiency is better than the efficiency of twin-screw pumps. Transient analysis at high GVF helped incorporate necessary changes in the design of sealflush recirculation loop to improve the efficiency of the pump. The effect of viscosity of the sealflush fluid at high GVF on pump performance was studied. Volumetric efficiency was found to be decreased with increase in viscosity. Flow visualization was aimed to characterize phase distribution along cavities and clearances at low to high GVF. Dynamic pressure variation was studied along the axis of the screw which helped correlate the GVF, velocity and pressure distribution. Complicated fluid flow behavior due to enclosed fluid pockets and interconnecting clearances makes it difficult to numerically simulate the pump. Hence design optimization and performance prediction incorporates only analytical approach and experimental evaluation. Current work represents an attempt to numerically simulate a multiphase twin-screw pump as a whole. Single phase 3D CFD simulation was performed for different pressure rise. The pressure and velocity profile agreed well with previous studies. Results are validated using an analytical approach as well as experimental data. A two-phase CFD simulation was performed for 50% GVF. An Eulerian approach was employed to evaluate multiphase flow behavior. Pressure, velocity, temperature and GVF distributions were successfully predicted using CFD simulation. Bubble size was found to be most dominant parameter, significantly affecting phase separation and leakage flow rate. Better phase separation was realized with increased bubble size, which resulted in decrease in leakage flow rate. CFD results agreed well with experimental data for the bubble size higher than 0.08 mm.
13

A detailed, stochastic population balance model for twin-screw wet granulation

McGuire, Andrew Douglas January 2018 (has links)
This thesis concerns the construction of a detailed, compartmental population balance model for twin-screw granulation using the stochastic weighted particle method. A number of new particle mechanisms are introduced and existing mechanisms augmented including immersion nucleation, coagulation, breakage, consolidation, liquid penetration, primary particle layering and transport. The model’s predictive power is assessed over a range of liquid-solid mass feed ratios using existing experimental data and is demonstrated to qualitatively capture key experimental trends in the physical characteristic of the granular product. As part of the model development process, a number of numerical techniques for the stochastic weighed method are constructed in order to efficiently solve the population balance model. This includes a new stochastic implementation of the immersion nucleation mechanism and a variable weighted inception algorithm that dramatically reduces the number of computational particles (and hence computational power) required to solve the model. Optimum operating values for free numerical parameters and the general convergence properties of the complete simulation algorithm are investigated in depth. The model is further refined though the use of distinct primary particle and aggregate population balances, which are coupled to simulate the complete granular system. The nature of this coupling permits the inclusion of otherwise computational prohibitive mechanisms, such as primary particle layering, into the process description. A new methodology for assigning representative residence times to simulation compartments, based on screw geometry, is presented. This residence time methodology is used in conjunction with the coupled population balance framework to model twin-screw systems with a number of different screw configurations. The refined model is shown to capture key trends attributed to screw element geometry, in particular, the ability of kneading elements to distribute liquid across the granular mass.
14

CONTINUOUS MELT GRANULATION FOR TASTE-MASKING OF ACTIVE PHARMACEUTICAL INGREDIENTS

Forster, Seth, 0000-0001-6072-1959 January 2021 (has links)
Melt granulation is a versatile process that is underutilized in the pharmaceutical industry. Most pharmaceutical wet granulation and twin-screw extruders can be adapted for melt granulation. Twin-screw melt granulation (TSMG) is of interest since is a continuous process and allows for flexible process design and a high degree of control. TSMG can be used to produce formulations for oral immediate or sustained release. This research focuses on the use of TSMG to taste-mask APIs. Many APIs are bitter or unpleasant tasting. Taste-masking may be required, particularly for products intended for pediatric patients. Taste-masking has been achieved with many different techniques, but a simple, cost-effective method that can be applied to many different APIs is not currently available. A matrix encapsulation approach using continuous twin-screw melt granulation was attempted with three different APIs. The resulting granule properties, particularly particle size, are related to the granulation process parameters. Prediction of taste-masking based on in vitro assessments is challenging and generally clinical evaluation is required. A small-volume dissolution method was developed as a screening test the melt granules. It is not clear if this technique is predictive of clinical taste-masking performance, but it is expected to be an improvement over discrete sampling or typical quality control dissolution methods. The dissolution rate was estimated using the Noyes-Whitney equation and correlated to the mean granule particle size. From this, a simple model for time to a taste threshold could be used to define a design space around the granulation process. / Pharmaceutical Sciences
15

Understanding pharmaceutical wet granulation in a twin screw extruder

Li, Huiying 11 1900 (has links)
Granulation is an important process for industries ranging from plastics to food and pharmaceutics. In the last decades, the twin-screw extruder has been more and more studied as a continuous method for granulation. But there are many questions remaining to be answered such as the functions of kneading block and the granulation behavior in this zone, the influence of the wetting method, and also the influence of the active pharmaceutical ingredient (API) properties on the granulation process. Therefore, in this project, a series of experiments were performed based on a new technique to the granulation field named ‘screw pullout’ for understanding the granulation process within the twin-screw extruder. In order to understand the specific function of an important screw element known as a kneading block, the physical particle motion reflecting progress of granulation was monitored along the screw. Different feed rate and formulations were studied; the residence time and pressure in kneading block were measured; and the granules along the screw were characterized for their porosity and size distribution. It was found that granule consolidation and breakup within the kneading block allowed the production of granules with consistent properties and excellent mechanical strength. However, the changes produced by a kneading block are dependent upon the formulation. For example, the kneading block demonstrates no observable function with formulations containing a significant content of microcrystalline cellulose. The most notable benefit of the kneading block to all tested materials appeared to be distribution of the interstitial binding liquid rather than to compact the powders. A new wetting method using a foam binder has been studied intensively in this work to assess its influence on the granulation process. A series of studies have been performed to compare the granule development along the screws as powder formulation and screw design were varied to test for the differences induced by the two wetting methods (foam delivery or liquid injection). The evolution of the granules along the screw was characterized by analyzing the particles size distribution, porosity, and fracture strength. It was found that the wetting method had minor impact on the particle size distribution due to the strong mechanical dispersion inherent to the extruder. The major finding for the pharmaceutical industry was that the foam method reduces the required amount of liquid to granulate, thereby dropping drying time after the process. The foamed binder was also found to be preferred when the formulation contains powder components with poor spreading properties. Finally, the influence of an API’s physical properties on granulation was studied by comparing formulations with varying API hydrophobicity. It was found that the API and binder distribution was not affected by the hydrophilicity of API, while the particle size distribution, porosity and fracture strength were strongly dependent on the properties of the API. / Thesis / Master of Applied Science (MASc)
16

Mixing Studies and Simulation of Compounding Chopped Fiber and Silica Filler into Thermoplastics in a Modular Co-Rotating Twin Screw Extruder

Bumm, Sug Hun 20 May 2010 (has links)
No description available.
17

Influence of type of granulators on formation of seeded granules

Kitching, V.R., Rahmanian, Nejat, Jamaluddin, N.H., Kelly, Adrian L. 17 June 2020 (has links)
Yes / It has been shown that seeded granules of calcium carbonate can be produced in commercial batch high shear granulators such as the Cyclomix high-shear impact mixer. Seeded granules are attractive to the pharmaceutical industry due to their high uniformity and good mechanical properties which can assist efficient tablet manufacture. In the current study, attempts to produce seeded granules of Durcal 65 and PEG 4000 binder using hot melt granulation are reported, in response to the recent shift towards continuous pharmaceutical manufacturing. Various screw configurations and rotation speeds were investigated in a series of experiments to determine the relationship between process conditions and granule properties. Particle size analysis, strength measurement and structural characterisation were used to quantify granule properties. It was found that using a series of kneading elements arranged at a 60° staggering angle located near to the feed section of the extruder screw generated strong, spherical granules. From structural characterisation approximately 5–15% of extruded granules were found to be seeded. Twin screw melt granulation is therefore considered to be a promising technique for continuous production of seeded granules, although a more detailed investigation is required to optimise yield and quality.
18

Solvent-Free Extrusion Emulsification Inside a Twin-Screw Extruder

Ivancic, Tomislav January 2019 (has links)
Solvent-free extrusion emulsification (SFEE) is a novel emulsification technology that operates without solvent to produce sub-micron sized particles (100–200 nm) using a twin-screw extruder (TSE) with high viscosity polymers (up to 600 Pa.s has been tested to date) and only water as the liquid medium. Surfactants have always been known to play a key role in the success of the SFEE process, however very little work has been done to investigate the mechanisms by which they operate, along with isolating the region of the process to which they play the most vital role. The first part of this thesis focused on an investigation into how different surface-active properties impacted the mechanism of SFEE. Three ionic (SDBS, Unicid 350, Calfax DB-45) and three non-ionic surfactants (Igepal CO-890, Brij 58, Synperonic F-108), each with differing surface-active properties were tested in solvent emulsification (SE) prior to their evaluation in SFEE. Synperonic F-108 was the only surfactant found unsuccessful in the SE process, and was therefore disregarded prior to SFEE testing. Of the three ionic surfactants, SDBS and Calfax were the only ones found to successfully create a stable emulsion in SFEE; the latter species doing so with 50% reduced molar loading. Igepal and Brij were found to produce very low amounts of emulsified material (5-25% of the total solids mass), requiring molar loadings that greatly exceed those of SDBS and Calfax to do so. Particles generated by both SE and SFEE were tested at extreme operating conditions to compare their relative stabilities, and were found to experience similar stability behaviours. This result reinforces previous findings that the dispersion stage controls the SFEE technique. The second part of this thesis continued the investigation on the use of non-ionics in SFEE, with a focus on the impact of their molecular structure on the overall process. Non-ionic surfactants with varying hydrophilic end group chain lengths were tested in SFEE, and it was determined that the optimal hydrophilic chain length was between 10–12 ethoxy units, where shorter chains resulted in coarse particle generation. The structure of the hydrophobic end group was tested as well, and through experimentation it was determined that a branched end group structure was slightly more beneficial than a linear end group to emulsion stabilization. As seen in the first part of this thesis, none of the new selection of non-ionic surfactants were capable of inducing sufficient phase inversion to result in a high percentage of emulsion leaving the extruder. The most promising ionic surfactant, Calfax DB-45, was combined with various promising non-ionic surfactants to create binary surfactant mixtures, and were tested in SFEE. Initial results yielded the most promising blend as Calfax/Igepal CA-630. After manipulation of both molar ratio and total surfactant loading, it was determined that a minimum Calfax loading of 0.06 mmol/g resin was required in the blend to achieve a stable 100 – 200 nm emulsion in both SE and SFEE processes, regardless of non-ionic concentration. The benefits of adding a non-ionic surfactant in the blend were seen with the substantial reduction of Calfax entrapped in the final latex particles, apparent by the distinct decrease in overall particle charge. A mini-study examining the impacts of increasing the viscosity of the water phase by hydrocolloid addition for the dilution stage has shown that positive changes to emulsion properties can be seen by this approach, but further experimentation is required before concrete conclusions can be made. / Thesis / Master of Applied Science (MASc) / The creation of nanoparticles has been a growing area of research in recent years, with numerous different means of generation being developed. Extruders have seldom been used for the generation of nanoparticles due to issues related to controlling generated particle characteristics. Previous work has shown that twin-screw extruders are capable of generating 100–200 nm particles, but the process has shown minimal robustness to variations in operating conditions. The aim of this study has been to continue the work of nanoparticle generation within a twin-screw extruder, with a specific focus on the impacts that special soap-like particles (surfactants) have on the process. Surfactants are special particles consisting of both a hydrophilic (“water-loving”) and hydrophobic (“water-hating”) end group that allows multiple substances to combine on a chemical level. Variations in the molecular structure and electronic charge of these surfactants, along with blends of different types of surfactants have been tested to gain a better understanding of their role in the process, and hopefully increase the overall robustness of the process. Overall, it was determined that surfactants with a negative charge were more successful in creating polyester latex particles than ones with a neutral molecular structure. The blending of a charged and neutral surfactant has been shown in this study to not only be successful in generating particles of desired size, but have also shown the ability to reduce the overall charge of the final latex particles.
19

Organic synthesis by Twin Screw Extrusion (TSE): Continuous, scalable and solvent-free

Crawford, Deborah E., Miskimmin, C.K.G., Albadarin, A.B., Walker, G., James, S.L. 31 January 2020 (has links)
No / Mechanochemistry provides a method to reduce or eliminate the use of solvents by carrying out reactions through the grinding of neat reagents. Until recently a significant drawback of this form of synthesis has been the limited ability to scale up. However, it has been shown that twin screw extrusion (TSE) may overcome this problem as demonstrated in the continuous synthesis of co-crystals, Metal Organic Frameworks (MOFs) and Deep Eutectic Solvents (DES), in multi kg h−1 quantities. TSE has provided a means to carry out mechanochemical synthesis in a continuous, large scale and efficient fashion, which is adaptable to a manufacturing process. Herein, we highlight the potential of this technique for organic synthesis by reporting four condensation reactions, the Knoevenagel condensation, imine formation, aldol reaction and the Michael addition, to produce analytically pure products, most of which did not require any post synthetic purification or isolation. Each reaction was carried out in the absence of solvents and the water byproduct was conveniently removed as water vapour during the extrusion process due to the elevated temperatures used. Furthermore, the Knoevenagel condensation has been studied in detail to gain insight into the mechanism by which these mechanochemical reactions proceed. The results point to effective wetting of one reactant by another as being critical for these reactions to occur under these reaction conditions. / EPSRC EP/L019655/1
20

Prétraitements de la cellulose pour une nanofibrillation par extrusion / Cellulose pretreatments for a nanofibrillation by twin-screw extrusion

Rol, Fleur 01 February 2019 (has links)
Ce projet vise à développer un nouveau procédé de fabrication de nanofibrilles de cellulose (NFC) à fort taux de matière sèche et en consommant peu d’énergie. L’extrusion bi-vis, technique industrielle, efficace énergétiquement et facilement adaptable fut ainsi utilisée pour produire des NFC à 20%. En diminuant considérablement la teneur en eau, cette nouvelle stratégie permet de diminuer le coût du transport, d’améliorer le stockage et d’élargir leur domaine d’application. Ce travail a consisté (i) à développer de nouveaux prétraitements chimiques des fibres de celluloses, respectueux de l’environnement pour faciliter la fibrillation de la cellulose et produire des NFC fonctionnelles de qualité, (ii) à optimiser les conditions d’extrusion ainsi que le profil de vis et (iii) à préparer des matériaux à partir de cette nouvelle matière. Quatre prétraitements chimiques ont été identifiés comme facilement industrialisables et ensuite optimisés. La nanofibrillation par extrusion a été ensuite simulée par un logiciel pour obtenir des conditions d’extrusion optimisées. La production de NFC de qualité à l’échelle semi-industrielle a été validée. Différentes applications ont été envisagées pour ces nouvelles NFC à fort taux de matière sèche. / This project aims at developing a new process to produce high solid content cellulose nanofibrils (CNF) decreasing the energy consumption and preserving the high quality compared to classic processes. Twin screw extrusion (TSE), industrially well-known, energy efficient and highly adaptable technique, was optimized to produce CNF at 20 wt% solid content. By decreasing considerably the water content, this new strategy improves the transport cost, the storage and widening the field of application and formulation. The objectives were to (i) develop new green pretreatments of cellulose fibers to facilitate the fibrillation and produce high quality functionalized CNF, (ii) optimize TSE screw profile and conditions to produce CNF and (iii) prepare new materials made of this new type of CNF. Four chemical pretreatments of cellulose fibers have been identified as industrially feasible, leading to high quality functionalized CNF and were widely studied and optimized. The nanofibrillation by TSE was simulated using a simulation software and TSE conditions were then successfully optimized. This cost-effective approach was validated at semi-industrial scale. Finally, different new applications with this new grade of CNF were considered.

Page generated in 0.0391 seconds