• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 11
  • 11
  • 10
  • 8
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 131
  • 41
  • 28
  • 22
  • 16
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Twinning in hexagonal materials: application to zirconium and magnesium

Juan, Pierre-Alexandr 21 September 2015 (has links)
The main objective of this thesis is to investigate and quantify the influence of parent-twin and twin-twin interactions on the mechanical response of hexagonal close-packed metals. To study parent-twin interactions, a mean-field continuum mechanics approach has been developed based on a new twinning topology in which twins are embedded in twinned grains. A first model generalizing the Tanaka-Mori scheme to heterogeneous elastic media is applied to first and second generation twinning in magnesium. In the case of first generation twinning, the model is capable of reproducing the trends in the development of backstresses within the twin domain as observed experimentally. Applying the methodology to the case of second-generation twinning allows the identification, in exact agreement with experimental observations, of the most likely second-generation twin variants to grow in a primary twin domain. Because the elastic behavior assumption causes internal stress level magnitudes to be excessively high, the first model is extended to the case of elasto-plasticity. Using a self-consistent approximation, the model, referred to as the double inclusion elasto-plastic self-consistent (DI-EPSC) scheme, is applied to Mg alloy polycrystals. The comparison of results obtained from the DI-EPSC and EPSC schemes reveals that deformation system activities and plastic strain distributions within twins drastically depend on the interaction with parent domains. The influence of twin-twin interactions on nucleation and growth of twins is being statistically studied from zirconium and magnesium electron back-scattered diffraction scans. A new twin recognition software relying on graph theory analysis has been developed to extract all microstructural and crystallographical data. It is capable of identifying all twinning modes and all twin-twin interaction types occurring in hexagonal close-packed materials. The first results obtained from high purity Zr electron back-scattered diffraction maps reveal that twin-twin interactions hinder subsequent twin nucleation. They also show that mechanisms involved in twin growth may differ significantly for each twinning mode. A second study performed on AZ31 Mg presents statistics about low Schmid factor {10-12} tensile twins and about {10-12}-{10-12} sequential double twins coupled with a simplified version of the Tanaka-Mori scheme generalized to heterogeneous elasticity with plastic incompatibilities.
12

Structural studies of two anti-carbohydrate antibodies

Evans, Dylan W. 13 May 2013 (has links)
This thesis is focused on determining the structures of two anti-carbohydrate antibodies to understand how they achieve their specificity toward antigen. First, the structure of the antigen-binding fragment from the monoclonal antibody S64-4 in complex with a pentasaccharide bisphosphate fragment from chlamydial lipopolysaccharide (LPS) has been determined by x-ray diffraction to 2.6 Å resolution. Like the well-characterized antibody S25-2, S64-4 displays a pocket formed by the residues of germline sequence corresponding to the heavy and light chain V gene segments that binds the terminal Kdo (3-deoxy-α-D-manno-oct-2-ulopyranosonic acid) residue of the antigen; however, although S64-4 shares the same heavy chain V gene segment as S25-2, it has a different light chain V gene segment. The new light chain V gene segment codes for a combining site that displays greater avidity, different specificity, and allows a novel antigen conformation that brings a greater number of antigen residues into the combining site than possible in S25-2. Further, while antibodies in the S25-2 family use complementarity determining region (CDR) H3 to discriminate among antigens, S64-4 achieves its specificity via the new light chain V gene segment and resulting change in antigen conformation. These structures reveal an intriguing parallel strategy where two different combinations of germline-coded V gene segments can act as starting points for the generation of germline antibodies against chlamydial antigens and show how anti-carbohydrate antibodies can exploit the conformational flexibility of this class of antigens to achieve high avidity and specificity independently of CDR H3. Second, the structure of a rabbit, single chain variable fragment against terminal mannose-6-phosphate (Man6P) residues, termed scFv M6P-1, has been determined by x-ray diffraction to 2.7 Å resolution with Man6P in the binding site. The Man6P pathway is the predominant pathway that transports acid hydrolases from the trans-Golgi to endosomes. Newly synthesized hydrolases first require the generation of Man6P markers before they can be transported. Maintaining a full complement of hydrolases within lysosomes is essential as failure to do so results in a number of different lysosomal storage diseases. Due to its specificity, scFv M6P-1 is able to diagnose lysosomal storage diseases mucolipidosis II and mucolipidosis III. scFv M6P-1 is also able to purify Man6P containing proteins which may be useful for enzyme replacement therapies. Additionally, scFv M6P-1 is one of the first structures of an antibody fragment that exhibits high specificity for a single carbohydrate residue and is one of the first structures of a rabbit antibody fragment. The specificity of scFv M6P-1, which gives it these unique attributes, is revealed in the structure where multiple hydrogen bonds are seen between the antibody’s heavy chain and the mannose ring while two salt bridges are observed between the antibody’s light chain and the phosphate moiety. Finally, scFv M6P-1 binds in such a way as to allow binding to proteins possessing terminal Man6P residues. Crystallographic challenges that arose during this research included poor crystal growth as well as twinning and these are explored while the structure of scFv M6P-1 complex with Man6P is analysed. / Graduate / 0487 / 0982 / 0307 / dyl.w.evans@gmail.com
13

The genesis of plagioclase twinning in the Nonewaug granite

Seifert, Karl Earl, January 1963 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1963. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 87-92).
14

Relations and Interactions between Twinning and Grain Boundaries in Hexagonal Close-Packed Structures

Barrett, Christopher Duncan 17 May 2014 (has links)
Improving the formability and crashworthiness of wrought magnesium alloys are the two biggest challenges in current magnesium technology. Magnesium is the best material candidate for enabling required improvements in fuel economy of combustion engines and increases in ranges of electric vehicles. In hexagonal closed-packed (HCP) structures, effects of grain size/morphology and crystallographic texture are particularly important. Prior research has established a general understanding of the dependences of strength and strain anisotropy on grain morphology and texture. Unfortunately, deformation, recrystallization, and grain growth strategies that control the microstructures and textures of cubic metals and alloys have not generally worked for HCPs. For example, in Magnesium, the deformation texture induced by primary forming operations (rolling, extrusion, etc.) is not randomized by recrystallization and may strengthen during grain growth. A strong texture reduces formability during secondary forming (stamping, bending, hemming etc.) Thus, the inability to randomize texture has impeded the implementation of magnesium alloys in engineering applications. When rare earth solutes are added to magnesium alloys, distinct new textures are derived. However, rare earth texture derivation remains insufficiently explained. Currently, it is hypothesized that unknown mechanisms of alloy processing are at work, arising from the effects of grain boundary intrinsic defect structures on microstructural evolution. This dissertation is a comprehensive attempt to identify formal methodologies of analyzing the behavior of grain boundaries in magnesium. We focus particularly on twin boundaries and asymmetric tilt grain boundaries using molecular dynamics. We begin by exploring twin nucleation in magnesium single crystals, elucidating effects of heterogeneities on twin nucleation and their relationships with concurrent slip. These efforts highlighted the necessity of imperfections to nucleate {10-12} twins. Subsequent studies encountered the importance of deformation faceting on the high mobility of {10- 12} and stabilization of observed twin mode boundaries. Implementation of interfacial defect theory was necessary to decipher the complex mechanisms observed which govern the development of defects in grain boundaries, disconnection pile-up, facet nucleation, interfacial disclination nucleation, disconnection movements, disconnection transformation across interfacial disclinations, crossaceting, and byproducts of interactions between lattice dislocations and grain boundaries.
15

Mechanisms of hardening in HCP structures through dislocation transmutation and accommodation effects by glide twinning: application to magnesium

Oppedal, Andrew Lars 07 August 2010 (has links)
At low temperatures, glide twinning activates in HCP structures easier than non-close packed slip necessary to accommodate strain along the c-axis. In contrast to slip, twinning occurs as an accumulation of successive stacking faults that properly report reconstruction of the stacking sequence in a new crystal-reorientated lenticular lamella. These faults are spread by partial dislocations known as twinning dislocations, forcing atoms to switch positions by shear into new crystal planes. As the twinning dislocations thread the faults, the new crystal lamella grows at the expense of the parent. Grain texture changes upon strain, and a strong non-linear trend marks the strain hardening rate. The strain hardening rate changes to a point where it switches sign upon strain. Since activation of these twinning dislocations obey Schmid’s law, twinning could be precluded or exhaustively promoted in sharp textures upon slight changes in loading orientations, so strong anisotropy arises. Moreover, a twinning shear can only reproduce the stacking sequence in one direction, unless the twin mode changes or the c/a ratio crosses a certain ratio. When a twin mode arises with reversed sign, the reorientation is different and more importantly, the strength is different and also the growth rate. Therefore, in addition to strain anisotropy, twin polarity induces a strong asymmetry in textured HCP structures, e.g. wrought HCP metals. This anisotropy/asymmetry is still a barrier to the great economic gain expected from the industrialization of low density, high specific strength and stiffness, HCP Magnesium. This barrier has stimulated efforts to identify the missing links in current scientific knowledge to proper prediction of Magnesium anisotropy. The effect of twinninginduced texture change on the mechanical response is of a major concern. Mesoscale modelers still struggle, without success to predict simultaneously twinning and strain hardening rates upon arbitrary loading directions. We propose a new mechanism that relies on admitting dislocation populations of the twin by dislocations transmuted from the parent when they intersect twinning disconnections. These dislocations interact with original dislocations created in the twin to cause hardening able to faithfully capture anisotropy upon any loading orientation and any initial texture.
16

Effect of twinning on texture and strain hardening in magnesium alloys subjected to different strain paths

Jiang, Lan, 1970- January 2008 (has links)
No description available.
17

Micromechanics: Crystal Plasticity Links for Deformation Twinning

Paudel, Yub Raj 14 December 2018 (has links)
Historically, the ability of crystal plasticity to incorporate the Schmid’s law at each integration point has been a powerful tool to simulate and predict the slip behavior at the grain level and the succeeding heterogeneous stress/strain localization and texture evolution at the macroscopic level. Unfortunately, this remarkable capability has not been replicated for materials where twinning becomes a noticeable deformation mechanism, namely in the case of low-stacking fault energy cubic, orthorhombic, and hexagonal close packed structures. This dissertation is an attempt to gain understanding on the heterogeneous deformation due to twinning through various techniques including micromechanics, discrete dislocation dipole loops, and digital image correlation (DIC) analyses, and then bring the collected small scale information up to the fullield crystal plasticity scale using fast Fourier Trans- forms. Results indicate that the twin spacing depends primarily upon the height of the twin, and the stress relaxation from the twinning depends upon the thickness of the twin. Furthermore, in a homogenous stress state, discrete dislocation dipole loop-based twinning model showed that the lenticular shape has the minimum stable energy rather than the lamellar or ellipsoidal twin morphology. Our study on the evolution of twinning under three-point bending condition in strongly basal textured magnesium alloy allowed us to build a strategy to incorporate characteristic twin spacing parameter in the crystal plasticity framework. Inspired by results from molecular dynamics (MD) simulations stressing the effect of shuffles on twin nucleation and disconnection core width, we developed an explicit twinning nucleation criterion based on hydrostatic stress gradient and volume fraction of twin inside a grain. Characteristic twin spacing parameter is used as a function of twin height to determine site specific nucleation points in case of multiple twinnings. This ap- proach offered a good reproduction of the microstructure evolution as affected by twinning in a tri-crystal system.
18

Crystal plasticity modeling of structural magnesium alloys under various stress states

Stinson, Joel H 09 August 2008 (has links)
In this work, a crystal elasto-viscoplastic model was modified to account for the anisotropic mechanical response of magnesium aluminum alloys. Crystal plasticity may offer new understanding of these alloys by explicitly modeling the texture development that profoundly affects the properties of magnesium. The model is able to account for the individual slip systems of both the cubic and hexagonal phases. The constants of the model were determined from published experimental AZ31 data, and the plastic hardening response is shown to match these results well using a modification to the hardening rule to approximate the kinetics of twinning. Model aggregates were created with aluminum compositions representative of common magnesium structural alloys. This approach allows the effect of varying percentage of cubic phase on the hexagonal magnesium alloy aggregate to be studied both in terms of macroscopic response and the crystallographic changes occurring within the system.
19

Constitutive modeling of slip, twinning, and untwinning in AZ31B magnesium

Li, Min 05 January 2006 (has links)
No description available.
20

Atomic mechanism of {101̅2} twin growth in Mg and Ti by phonon calculations / フォノン計算によるMgおよびTi{101̅2}変形双晶成長の微視的機構

Mizokami, Keiyu 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23892号 / 工博第4979号 / 新制||工||1777(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 田中 功, 教授 乾 晴行, 教授 中村 裕之 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM

Page generated in 0.0515 seconds