Spelling suggestions: "subject:"awo"" "subject:"bwo""
231 |
The venting of a runaway esterification reaction on both the laboratory and pilot scalesHare, John Andrew January 1997 (has links)
No description available.
|
232 |
Development of a Single-Stage Modulator for Comprehensive Two-Dimensional Gas Chromatography (GC × GC)McNeish, Christopher January 2011 (has links)
The ability to effectively analyze particulate matter (PM2.5) in air is becoming increasingly pertinent. Allen Goldstein of the University of California in Berkeley is studying the semi-volatile fraction of organic compounds in PM2.5 through the use of the thermal desorption aerosol gas chromatograph (TAG) system. However, as conventional GC does not provide adequate separation power, the development of comprehensive two-dimensional gas chromatography (GC × GC) was required. GC × GC works more effectively by utilizing a modulator that periodically traps and focuses analytes from a primary column onto a secondary column. This allows for the primary and secondary columns to separate the analytes based on two different properties.
This report focuses on the continuing study and enhancement of a modulator designed by Ognjen Panić during his Masters project. Improving and testing the robustness of this dual stage modulator was originally the focus of this project. However, this study led to the development of a single stage modulator. In addition to that, the effect of modulator characteristics such as length of the restriction, total length of the modulator and wall thickness on the modulator performance were studied. A robustness test of the single stage modulator was also completed. Experiments conducted tested the characteristics of the new modulator to ensure it performed effectively and would satisfy the requirements of the TAG system. A study comparing the sensitivity of conventional gas chromatography and GC × GC was also preformed. The sensitivity of GC × GC was on average an order of magnitude better than that of 1D GC.
|
233 |
Long Term Two-Phase Flow Analysis of the Deep Low Permeability Rock at the Bruce DGR SiteGuo, Huiquan 25 April 2011 (has links)
Abnormal pressures have been measured in the deep boreholes at the Bruce site, southern Ontario, where a deep geologic repository for low and intermediate level radioactive waste disposal has been proposed. The pressure regime in the stratigraphic units exhibits either higher than hydrostatic pressure (over-pressured) or lower than hydrostatic pressure (under-pressured) are considered to be abnormal. At the Bruce site, the Ordovician sediments are under-pressured while the underlying Cambrian sandstone and the overlying Guelph carbonate are over-pressured. Hypotheses have been documented in literature to explain the phenomenon of abnormal pressures. These hypotheses include osmosis, glacial loading and deglaciation unloading, exhumation of overlying sediments, crustal flexure and the presence of an immiscible gas phase. Previous work on the Bruce site has shown that the under-pressures in the Ordovician limestone and shales could not be explained by glaciation and deglaciation or by saturated analyses. The presence of a gas phase in the Ordovician formations has been determined to be a reasonable cause of the under-pressure developed in the Ordovician shales and limestones at the Bruce site. Support for the presence of a gas phase includes solution concentrations of methane, concentrations of environmental isotopes related to methane and estimates of water and gas saturations from laboratory core analyses.
The primary contribution of this thesis is the sensitivity analyses performed on the hydrogeologic parameters with respect to a one dimensional two-phase flow model. First, a one dimensional two-phase air and water flow model was adopted and reconstructed to simulate the long-term evolution of the groundwater regimes at the DGR site. Then the hydrogeologic parameters which impact the presence of under-pressure in the groundwater are investigated. Data required to quantify the properties of geologic media and groundwater are adopted directly from borehole testing and laboratory testing results. The permeable boundaries of the domain are assumed to be water saturated and pressure specified (using hydrostatic conditions in the Guelph Formation and hydrostatic with 120 m over-pressure condition in the Cambrian and Precambrian). Isothermal conditions were assumed, thus constant water density and viscosity values are estimated for the average total dissolved solids (TDS) concentration of the modelled stratigraphic column. A constant diffusion coefficient (a diffusivity of $0.25\times10^{-8}$ m$^2$/s) of air in water is assumed with a saturation-dependent tortuosity. The air generation rate is assumed to simulate the gas phase generated in the Ordovician formations. The numerical simulation of up to 4 million years provides a means to explore the behaviour of gas phase dissipation due to partitioning into the water phase and diffusive transport in the solute phase. Results confirmed that the presence of a gas phase would result in the under-pressure in water.
|
234 |
Task Optimization and Workforce SchedulingShateri, Mahsa 31 August 2011 (has links)
This thesis focuses on task sequencing and manpower scheduling to develop robust schedules for an aircraft manufacturer. The production of an aircraft goes through a series of multiple workstations, each consisting of a large number of interactive tasks and a limited number of working zones. The duration of each task varies from operator to operator, because most operations are performed manually. These factors limit the ability of managers to balance, optimize, and change the statement of work in each workstation. In addition, engineers spend considerable amount of time to manually develop schedules that may be incompatible with the changes in the production rate.
To address the above problems, the current state of work centers are first analyzed. Then, several deterministic mathematical programming models are developed to minimize the total production labour cost for a target cycle time. The mathematical models seek to find optimal schedules by eliminating and/or considering the effect of overtime on the production cost. The resulting schedules decrease the required number of operators by 16% and reduce production cycle time of work centers by 53% to 67%. Using these models, the time needed to develop a schedule is reduced from 36 days to less than a day.
To handle the stochasticity of the task durations, a two-stage stochastic programming model is developed to minimize the total production labour cost and to find the number of operators that are able to work under every scenario. The solution of the two-stage stochastic programming model finds the same number of operators as that of the deterministic models, but reduces the time to adjust production schedules by 88%.
|
235 |
Statistical Methods for Incomplete Covariates and Two-Phase DesignsMcIsaac, Michael 18 December 2012 (has links)
Incomplete data is a pervasive problem in health research, and as a result statistical methods enabling inference based on partial information play a critical role.
This thesis explores estimation of regression coefficients and associated inferences when variables are incompletely observed. In the later chapters, we focus primarily on settings with incomplete covariate data which arise by design, as in studies with two-phase sampling schemes, as opposed to incomplete data which arise due to events beyond the control of the scientist.
We consider the problem in which "inexpensive" auxiliary information can be used to inform the selection of individuals for collection of data on the "expensive" covariate. In particular, we explore how parameter estimation relates to the choice of sampling scheme. Efficient sampling designs are defined by choosing the optimal sampling criteria within a particular class of selection models under a two-phase framework. We compare the efficiency of these optimal designs to simple random sampling and balanced sampling designs under a variety of frameworks for inference.
As a prelude to the work on two-phase designs, we first review and study issues related to incomplete data arising due to chance.
In Chapter 2, we discuss several models by which missing data can arise, with an emphasis on issues in clinical trials.
The likelihood function is used as a basis for discussing different missing data mechanisms for
incomplete responses in short-term and longitudinal studies, as well as for missing covariates.
We briefly discuss common ad hoc strategies for dealing with incomplete data, such as
complete-case analyses and naive methods of imputation, and we review more broadly appropriate approaches for dealing with
incomplete data in terms of asymptotic and empirical frequency properties.
These methods include the EM algorithm, multiple imputation, and inverse probability weighted estimating equations.
Simulation studies are reported which demonstrate how to implement these procedures and examine performance empirically.
We further explore the asymptotic bias of these estimators when the nature of the missing data mechanism is misspecified.
We consider specific types of model misspecification in methods designed to account for the missingness and compare the limiting values of the resulting estimators.
In Chapter 3, we focus on methods for two-phase studies in which covariates are incomplete by design. In the second phase of the two-phase study, subject to correct specification of key models, optimal sub-sampling probabilities can be chosen to minimise the asymptotic variance of the resulting estimator.
These optimal phase-II sampling designs are derived and the empirical and asymptotic relative efficiencies resulting from these designs are compared to those from simple random sampling and balanced sampling designs. We further examine the effect on efficiency of utilising external pilot data to estimate parameters needed for derivation of optimal designs, and we explore the sensitivity of these optimal sampling designs to misspecification of preliminary parameter estimates and to the misspecification of the covariate model at the design stage.
Designs which are optimal for analyses based on inverse probability weighted estimating equations are shown to result in efficiency gains for several different methods of analysis and are shown to be relatively robust to misspecification of the parameters or models used to derive the optimal designs. Furthermore, these optimal designs for inverse probability weighted estimating equations are shown to be well behaved when necessary design parameters are estimated using relatively small external pilot studies.
We also consider efficient two-phase designs explicitly in the context of studies involving clustered and longitudinal responses. Model-based methods are discussed for estimation and inference. Asymptotic results are used to derive optimal sampling designs and the relative efficiencies of these optimal designs are again compared with simple random sampling and balanced sampling designs. In this more complex setting, balanced sampling designs are demonstrated to be inefficient and it is not obvious when balanced sampling will offer greater efficiency than a simple random sampling design.
We explore the relative efficiency of phase-II sampling designs based on increasing amounts of information in the longitudinal responses and show that the balanced design may become less efficient when more data is available at the design stage. In contrast, the optimal design is able to exploit additional information to increase efficiency whenever more data is available at phase-I.
In Chapter 4, we consider an innovative adaptive two-phase design which breaks the phase-II sampling into a phase-IIa sample obtained by a balanced or proportional sampling strategy, and a phase-IIb sample collected according to an optimal sampling design based on the data in phases I and IIa. This approach exploits the previously established robustness of optimal inverse probability weighted designs to overcome the difficulties associated with the fact that derivations of optimal designs require a priori knowledge of parameters. The efficiency of this hybrid design is compared to those of the proportional and balanced sampling designs, and to the efficiency of the true optimal design, in a variety of settings. The efficiency gains of this adaptive two-phase design are particularly apparent in the setting involving clustered response data, and it is natural to consider this approach in settings with complex models for which it is difficult to even speculate on suitable parameter values at the design stage.
|
236 |
The two-phase plane turbulent mixing layer /Ward, Duncan Estcourt. January 1986 (has links) (PDF)
Thesis (Ph. D.)--University of Adelaide, Dept of Mechanical Engineering, 1987. / One microfilm reel (16 mm.) in pocket. Includes bibliographical references (leaves 194-201).
|
237 |
Transient simulation of non-Newtonian coextrusion flows in complex geometries /Rincon, Alberto. January 1998 (has links)
Thesis (Ph.D.) -- McMaster University, 1999. / Includes bibliographical references (leaves 222-229). Also available via World Wide Web.
|
238 |
A study of oil-water flows in large diameter horizontal pipelinesShi, Hua. January 2001 (has links)
Thesis (Ph. D.)--Ohio University, 2001. / Title from PDF t.p.
|
239 |
A mathematical model for one-component unsteady-state two-phase critical flow in a long pipeline /Pajoumand, Ghasem. January 1974 (has links)
Thesis (Ph.D.)--University of Tulsa, 1974. / Bibliography: leaves 89-91.
|
240 |
Transient phenomena in two-phase horizontal flowlines for the homogeneous, stratified and annular flow patterns /Dutta-Roy, Kunal. January 1984 (has links)
Thesis (Ph.D.)--University of Tulsa, 1984. / Bibliography: leaves 73-75.
|
Page generated in 0.3147 seconds