Spelling suggestions: "subject:"awo higgs doublet model"" "subject:"awo higgs doublet godel""
1 |
Direct and Indirect Searches for New Physics beyond Standard ModelZhang, Huanian, Zhang, Huanian January 2016 (has links)
The search for new physics beyond the Standard Model can follow one of two tracks: direct searches for new particles at the collider or indirect probes for new physics from precision measurements. In the direct searches for third generation squarks in SUSY at the LHC, the common practice has been to assume a 100% decay branching fraction for a given search channel. In realistic MSSM scenarios, there is often more than one signicant decay mode present, which signicantly weakens the current search limits on third generation squarks at the LHC. On the other hand, the combination of multiple decay modes as well as the new open decay modes offer alternative discovery channels for third generation squarks searches. In this work, we present the third generation squarks decay and the collider signatures in a few representative mass parameter scenarios. We then analyze the reach of the stop/sbottom signal for the pair production in QCD at the 14 TeV LHC with 300 fb⁻¹ integrated luminosity and of the 100 TeV future collider with 3000 fb⁻¹ integrated luminosity in a few representative scenarios. In the scenario of Bino LSP with Wino NLSP, we investigate stop/sbottom pair production at the LHC with one stop/sbottom decaying via t̃ --> t𝑥[0 1], t𝑥[0 2]/b̃ --> b𝑥[0 1], b𝑥[0 2], and the other one decaying via t̃ --> b𝑥[± 1]/b̃ -->t𝑥[± 1]. With the gaugino subsequent decaying to gauge bosons or a Higgs boson 𝑥[0 2] --> 𝑍𝑥[0 1], h𝑥[0 1] and 𝑥[± 1]--> 𝑊±𝑥[0 1], leading to 𝑏𝑏𝑏𝑏𝑗𝑗𝓁 Ɇᴛ final states for the Higgs channel and 𝑏𝑏𝑗𝑗𝑗𝑗𝓁𝓁Ɇᴛ final states for the 𝑍 channel, we study the reach of those signals at the 14 TeV LHC with 300 fb⁻¹ integrated luminosity. Because the sbottom and stop signals in the same SUSY parameter scenario have indistinguishable final states, they are combined to obtain optimal sensitivity, which is about 150 GeV better than the individual reaches of the sbottom or stop. In the scenario of Bino LSP with Higgsino NLSP. The light stop pair production at the 14 TeV LHC, with stops decaying via t̃₁ --> t𝑥[0 2]/𝑥[0 3] and the neutralino subsequently decaying to a gauge boson or a Higgs boson 𝑥[0 2]/𝑥[0 3] --> 𝑥[0 1]h/𝑍, leads to tt̄hh Ɇᴛ, tt̄h𝑍 Ɇᴛ or tt̄𝑍𝑍 Ɇᴛ final states. The above decay channels give rise to final states containing one or more leptons, therefore our search strategy is to divide the signal regions based on the multiplicity of leptons. We find that the one lepton signal region of channel tt̄h𝑍 Ɇᴛ has the best reach sensitivity of light stop searches at the 14 TeV LHC with 300 fb⁻¹ integrated luminosity. We then combine all the signal regions for a given decay channel or combine all the decay channels for a given signal region to maximize the reach sensitivity of the stop search. For the light stop pair production at the √s = 100 TeV future machine with 3000 fb⁻¹ integrated luminosity, we find that a stop with a mass up to 6 TeV can be discovered at 5𝜎 signicance, while a mass up to 6.8 TeV can be excluded at 95% C.L. for the combined results of all three channels. In the indirect probes for new physics, we utilize the 𝑍-pole Oblique Parameters 𝑆,𝑇, 𝑈 and Higgs precision measurements complementarily in the framework of the Two Higgs Doublet Model at current and future colliders. The 𝑆, 𝑇 , 𝑈 is not that sensitive to the rotation angle 𝛽-𝛼, while the Higgs precision measurements set strong constrains on 𝛽-𝛼. Also the 𝑇 is very sensitive to the mass difference of Higgs bosons, leading to the mass of charged Higgs (H±) aligning either along with the mass of neutral Higgs 𝐻 or 𝐴. As for the Higgs precision measurements, we consider the tree level corrections to Higgs coupling constants as well as the radiative corrections to Higgs coupling constants at one loop level for the future collider. The combination of 𝑍-pole precision measurements and Higgs precision measurements complementarily set strong constraints on the parameter space of the 2HDM, especially in the future 𝑒⁺𝑒⁻ circular collider compared to the current collider due to much cleaner backgrounds and higher luminosity.
|
2 |
Symmetries and topological defects of the two Higgs doublet modelBrawn, Gary Derrick January 2011 (has links)
The standard model of particle physics is the most precisely verified scientific theory in the history of mankind. However, extended theories are already in place, ready to supersede the standard model should it fail to describe any new physics that may be observed in the next generation of high energy particle accelerators. One such minimal extension is the Two Higgs Doublet Model (2HDM). However, the appearance of additional symmetries to those of the gauge symmetries in the 2HDM can have consequences for the cosmological viability of the model, with the possibility for non-trivial topological defects forming during spontaneous symmetry breaking phase transitions.In this research we perform a systematic study of six accidental Higgs Family and CP symmetries that can occur in the 2HDM potential, by introducing and utilizing our Majorana scalar-field formalism. General sufficient conditions for convexity and stability of the scalar potential are derived and analytical solutions for two non-zero neutral vacuum expectation values of the Higgs doublets for each of the six symmetries are presented, in terms of the parameters of the theory. We identify the topological defects associated with the spontaneous symmetry breaking of each symmetry by means of a homotopy-group analysis. We find the existence of domain walls from the breaking of Z2, CP1 and CP2 discrete symmetries, vortices in models with broken U(1)PQ and CP3 symmetries and a global monopole in the SO(3)HF-broken model. We study the associated topological defect solutions as functions of the potential parameters via gradient flow methods. We also consider the cosmological implications of the topological defects and are able to derive bounds on physical observables of the theory in order to avoid contradictions with the theoretical limits on topological defects. The application of our Majorana scalar-field formalism in studying more general scalar potentials that are not constrained by the U(1)Y hypercharge symmetry is discussed. In particular, the formalism may be used to properly identify seven previously hidden symmetries that may be manifest in a U(1)Y invariant scalar potential for particular choices of the model parameters.
|
3 |
Flavor Changing Neutral Current Processes In The Framework Of The Two Higgs Doublet ModelTuran, Ismail 01 January 2003 (has links) (PDF)
It is widely believed that the Standard Model (SM) can not be a fundamental
theory of the basic interactions. Originated from this fact, many new physics
models have been proposed. Among them, the two Higgs doublet model (2HDM),
the SM enlarged by adding one extra scalar doublet, is considered as the simplest extension of the SM.
In this work, within the framework of the model III version of the 2HDM,
the exclusive decay the branching ratio is calculated and discussed in various physical regions determined by model parameters. It is
observed that it is possible to reach present experimental upper limits in model Finally, the
avor changing top quark decay,
|
4 |
Lepton Flavor Violation In The Two Higgs Doublet ModelSundu, Hayriye 01 June 2007 (has links) (PDF)
The lepton flavor violating interactions are interesting in the sense that they are sensitive the physics beyond the standard model and they ensure considerable information about the restrictions of the free parameters, with the help of the possible accurate measurements. In this work, we investigate the lepton flavor
violating H+ ! W+l and the lepton flavor conserving H+ ! W+l decays in the general two Higgs doublet model and we estimate decay widths of these decays. After that, we analyze lepton
flavor violating decay !
i in the same model and calculate its branching ratio. We observe that the
experimental results of the processes under consideration can give comprehensive
information about the physics beyond the standard model and the existing free
parameters.
|
5 |
Lepton Flavor Violating Radion Decays In The Randall-sundrum ScenarioKorutlu, Beste 01 February 2008 (has links) (PDF)
The lepton flavor violating interactions are worthwhile to examine since they
are sensitive to physics beyond the Standard Model. The simplest extension of
the Standard Model promoting the lepton flavor violating interactions are the
so called two Higgs doublet model which contains an additional Higgs doublet
carrying the same quantum numbers as the first one. In this model, the lepton
flavor violating interactions are induced by new scalar Higgs bosons, scalar h^0
and pseudo scalar A^0, and Yukawa couplings, appearing as free parameters, are
determined by using the experimental data. On the other hand, the possible
extra dimensions are interesting in the sense that they ensure a solution to the
hierarchy and cosmological constant problems and also result in the enhancement
in the physical quantities of various processes. In the present work, we predict
the branching ratios of lepton flavor violating radion decays r-> / e^+- mu^-+, r-> / e^+- tau^-+ and r-> / mu^+- tau^-+ in the two Higgs doublet model, including a single extra
dimension, in the framework of the Randall Sundrum scenario. We observed that
the branching ratios of the processes we study are at most at the order of 10^-8
for the small values of radion mass and it decreases with the increasing values of
the radion mass. Among the LFV decays we study, the r-> / mu^+- tau^-+ decay would
be the most suitable one to measure its branching ratio.
|
6 |
The Inclusive Semileptonic Decays Of The B-meson In A Cp Softly Broken Two Higgs Doublet ModelAcar, Hilal 01 January 2004 (has links) (PDF)
In this work, the B-> / X_dell ell decays are examined in the context of a
CP softly broken two Higgs doublet model. The differential
branching ratio, forward-backward asymmetry, CP-violating
asymmetry, CP-violating asymmetry in the forward-backward
asymmetry and polarization asymmetries of the final lepton in this
decay are studied. The dependencies of these physical parameters
on the model parameters are analyzed by paying a special attention
to the effects of neutral Higgs boson (NHB) exchanges and possible
CP violating effects. It has been found that NHB effects are
quite significant for the tau mode and the above-mentioned
observables seems to be promising as a testing ground for new
physics beyond the SM, especially for the existence of the
CP-violating phase in the theory.
|
7 |
Effects of heavy Higgs bosons in the hadronic production of top-quark pairs including QCD correctionsGaller, Peter 13 February 2018 (has links)
In dieser Disseratation wird eine mögliche Erweiterung des Standardmodells der
Elementarteilchen (SM) im Higgs-Sektor mithilfe von Topquarkpaarproduktion am
Large Hadron Collider untersucht. Insbesondere wird dabei auf das sogenannte
Zwei-Higgs-Duplettmodell eingegangen. Dieses Modell führt mehrere Spin-0
Bosonen (auch Higgsbosonen genannt) zusätzlich zum SM-Higgsboson ein. Dabei
wird in dieser Arbeit von der Annahme ausgegangen, dass diese zusätzlichen
Higgsbosonen schwer genug sind um in ein Top-Antitop-Paar zu zerfallen. Somit
können die experimentellen Signaturen dieser neuen Teilchen mit Hilfe von
Observablen der Topquarkpaarproduktion untersucht werden. Dazu wird die
resonante Erzeugung von schweren Higgsbosonen und deren Zerfall in
Topquarkpaare bis einschließlich Quantenkorrekturen in der nächst-zu-führenden
Ordnung (NLO) in der QCD-Kopplungskonstanten berechnet. Weiterhin wird die
volle Spininformation des Top-Antitop-Paares beibehalten, welche die Analyse
von spinabhängigen Observablen erlaubt. Diese können, insbesondere in Falle von
Top-Antitop-Spinkorrelationen, sehr sensitiv auf Effekte schwerer Higgsbosonen
sein. Dies zeigt sich besonders in Vergleich zu spinunabhängigen Observablen.
Die Sensitivität von spinabhängigen Observablen kann zudem noch durch
entsprechende Schnitte auf den Phasenraum von Top- und Antitopquark verstärkt
werden. In dieser Dissertation wird ein Verfahren vorgestellt, mit dessen Hilfe
sich die Spinkorrelationen identifizieren lassen, welche die größte
Sensitivität auf die Effekte schwerer Higgsbosonen aufweisen. Außerdem wird
durch die Berechnung der Beiträge zur NLO u.a. gezeigt, dass diese Beiträge
wichtig sind um aussagekräftige und robuste Observablen zu definieren. Die
Ergebnisse der NLO, die in dieser Arbeit vorgestellt werden, sind die ersten
ihrer Art für die resonante Erzeugung von schweren Higgsbosonen und deren
Zerfall in Topquarkpaare. / In this dissertation a possible extension of the standard model of particle
physics (SM) in the Higgs sector is investigated using top-quark pair
production at the Large Hadron Collider as a probe. In particular, the
so-called two-Higgs-doublet model (2HDM) is studied. The 2HDM introduces several spin-0
bosons (which are also called Higgs bosons) in addition to the SM Higgs boson.
In this thesis these additional Higgs bosons are assumed to be heavy enough to decay into a
top-antitop quark pair. Thus, the experimental signatures of these new
particles can be studied through observables of top-quark pair production.
To this end the resonant production of heavy neutral Higgs bosons and their decay into
top-quark pairs in calculated up to next-to-leading order corrections in the
QCD coupling constant retaining the full spin information of the top-antitop
pair. This allows to analyse spin dependent observables which can be more
sensitive to effects of heavy Higgs bosons than spin independent ones
especially in the case of top-antitop spin correlations. The additional
application of kinematical cuts on the phase space of top and antitop quarks
can enhance the sensitivity further. In this thesis a method is presented that
can be used to construct the spin correlation which is most sensitive to the
effects of heavy Higgs bosons on top-quark pair production.
Furthermore, it is shown that the next-to-leading order
corrections are required to construct observables which entail robust
predictions. The results for the next-to-leading order in the QCD coupling
constant presented in this thesis were the first ones given for resonant heavy
Higgs production and decay into top-quark pairs.
|
Page generated in 0.0406 seconds