• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 275
  • 142
  • 81
  • 49
  • 14
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • Tagged with
  • 718
  • 718
  • 718
  • 147
  • 133
  • 111
  • 111
  • 96
  • 88
  • 83
  • 83
  • 82
  • 61
  • 56
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Dynamic modeling of vertical U-tube steam generators for operational safety systems

Strohmayer, Walter Herbert January 1982 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Vita. / Bibliography: Ref 1-Ref 7. / by Walter Herbert Strohmayer. / Ph.D.
332

Experimental investigation of the thermal-hydraulics of gas jet expansion in a two-dimensional liquid pool.

Rothrock, Ray Alan January 1978 (has links)
Thesis. 1978. M.S.--Massachusetts Institute of Technology. Dept. of Nuclear Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Includes bibliographical references. / M.S.
333

Improved Particle Method with High-Resolution and Computational Stability for Solid-Liquid Two-Phase Flows / 固液二相流のための粒子法の高解像度化と安定化

Tsuruta, Naoki 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18223号 / 工博第3815号 / 新制||工||1585(附属図書館) / 31081 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 後藤 仁志, 教授 細田 尚, 准教授 KHAYYER Abbas / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
334

Study on Upward Air-Water Two-Phase Turbulent Flow Characteristics in a Vertical Large Square Duct / 大口径正方形管内の鉛直上昇気液2相乱流流動特性に関する研究

Sun, Haomin 24 March 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18272号 / 工博第3864号 / 新制||工||1593(附属図書館) / 31130 / 京都大学大学院工学研究科原子核工学専攻 / (主査)教授 功刀 資彰, 教授 中部 主敬, 准教授 横峯 健彦 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
335

Heat Transfer and Fluid Flow Characteristics of Two-Phase Jet Impingement at LowNozzle-to-Plate Spacing

Glaspell, Aspen W. 16 August 2018 (has links)
No description available.
336

Comparison of heat transfer and fluid flow characteristics between submerged and free surface jet impingement for two-phase flow

Rouse, Victoria J. January 2018 (has links)
No description available.
337

Numerical approach of a hybrid rocket engine behaviour : Modelling the liquid oxidizer injection using a Lagrangian solver

Sporschill, Gustave January 2017 (has links)
To access and operate in space, a wide range of propulsion systems has been developed, from high-thrust chemical propulsion to low-thrust electrical propulsion, and new kind of systems are considered, such as solar sails and nuclear propulsion. Recently, interest in hybrid rocket engines has been renewed due to their attractive features (safe, cheap, flexible) and they are now investigated and developed by research laboratories such as ONERA.This master’s thesis work is in line with their development at ONERA and aims at finding a methodology to study numerically the liquid oxidizer injection using a Lagrangian solver for the liquid phase. For this reason, it first introduces a model for liquid atomiser developed for aeronautical applications, the FIMUR model, and then focuses on its application to a hybrid rocket engine configuration.The FIMUR model and the Sparte solver have proven to work fine with high mass flow rates on coarse grids. The rocket engine simulations have pointed out the need of an initialisation of the flow field. The methodology study has proven that starting with a reduced liquid mass flow rate is preferable to a simulation with a reduced relaxation between the coupled solvers. The former could not be brought to conclusion due to lack of time but gives an encouraging path to further investigate.
338

Measurements in Air-water Bubbly Flow Through a Vertical Narrow High-aspect Ratio Channel

Patrick, Benjamin R. 01 January 2011 (has links)
Two-Phase bubbly flows are encountered in a wide range of industrial applications, particularly where phase changes occur as seen in high performance heat exchangers and boiling reactors for power generation. These flows have been extensively studied in channels with circular geometries using air-water flows, though little data exists for flows through narrow rectangular channels. Measurements in thin geometries are particularly challenging since large bubbles bridge the gap, and it is difficult to compare point measurements with photographic techniques. The objective of this study is to explore the abilities of hot-film anemometry and high speed photography for taking measurements in a narrow vertical rectangular channel for a range of volume fractions, with particular attention on the narrow dimension. Hot-film anemometry (HFA) is a measurement technique originally developed for the measurement of fluid velocities, but has since been found to have applications for broader measurements in multiphase flow. With the sensor operating on the principle of heat loss, the method takes advantage of the differing abilities of the phases to transport heat, with each phase leaving its own signature in the signal response. The linchpin of this method lies in the ability to accurately distinguish between the two phases within the signal, and to execute this operation, various algorithms and techniques have been developed and used with some success for a wide range of flow conditions. This thesis is a study of the various methods of analysis such as amplitude threshold for triggering, and small slope threshold for finely tuning the edges of the bubble interactions, and demonstrates the capabilities of the hot-film sensor in a narrow rectangular vertical duct with a high aspect ratio. A vertical acrylic test section was fabricated for the purposes of this study, inset with a rectangular channel 38.1mm in width and 3.125mm in depth. Experiments were conducted for volume fractions ranging from 2% to 35%, which remained within the limits of the bubbly flow regime, but ranged from small uniform bubbles to larger bubbles coalescing into a transition regime. The hot-film signal was analyzed for void fraction, bubble speed, and bubble size. An in-depth study of the various methods of phase discrimination was performed and the effect of threshold selection was examined. High-speed video footage was taken in conjunction with the anemometer data for a detailed comparison between methods. The bubble speed was found to be in close agreement between the HFA and high-speed video, staying within 10% for volume fractions above 10%, but still remaining under a 30% difference for even as low as the 2% volume fraction, where measurements have been found to be historically difficult. The trends with volume fraction between the HFA and high-speed results were very similar. A correlation for narrow rectangular channels employing a simple drift flux model was found to compare with the void fraction data where appropriate. Good agreement was found between the methods using a hybrid phase discrimination technique for the HFA data for the void fraction and bubble speed results, with the high-speed video results showing a slight over-estimation in regards to the bubble size.
339

MODELING TWO-PHASE CONFIGURATIONS: THEORETICAL MODEL FOR FLOW BOILING CRITICAL HEAT FLUX AND COMPUTATIONAL MODEL FOR VARIABLE CONDUCTANCE HEAT PIPE

Huang, Cho-Ning 26 August 2022 (has links)
No description available.
340

Study Of The Hydrodynamics Of Droplet Impingement On A Dry Surface Using Lattice Boltzmann Method

Gu, Xin 01 January 2009 (has links)
In this work, a two-phase lattice Boltzmann method (LBM) approach is implemented to investigate the hydrodynamic behavior of a single droplet impingement on a dry surface. LBM is a recently developed powerful technique to compute a wide range of fluid flow problems, especially in applications involving interfacial dynamics and complex geometries. Instead of solving the non-linear Navier-Stokes equations, which are complicated partial differential equations, LBM solves a set of discretized linear equations, which are easy to implement and parallelize. The fundamental idea of LBM is to recover the macroscopic properties of the fluid which obeys Navier-Stokes equations, by using simplified kinetic equations that incorporate the essential physics at the microscopic level. Considering the numerical instability induced by large density difference between two phases during the LBM simulations, the particular LBM scheme used in this study has its benefits when dealing with high density ratios. All the simulations are conducted for density ratio up to 50 in a three-dimensional Cartesian coordinate system, and three important dimensionless numbers, namely Weber number, Reynolds number and Ohnesorge number, are used for this study. To validate this multiphase LBM approach, several benchmark tests are conducted. First, the angular frequency of an oscillating droplet is calculated and compared with the corresponding theoretical value. Errors are found to be within 6.1% for all the cases. Secondly, simulations of binary droplet collisions are conducted in the range of 20

Page generated in 0.283 seconds