Spelling suggestions: "subject:"type IV secretion atemsystem"" "subject:"type IV secretion systsystem""
1 |
Role of type IV secretion systems in trafficking of virulence determinants of Burkholderia cenocepaciaEngledow, Amanda Suzanne 02 June 2009 (has links)
Type IV secretion systems have been identified in several human pathogens including Bordetella pertussis, Helicobacter pylori, and Legionella pneumophila. These systems are responsible for the translocation of virulence proteins and/or DNA, thereby playing an important role in the pathogenesis of infection and plasticity of genomes. Burkholderia cenocepacia is an important opportunistic human pathogen, particularly in persons with cystic fibrosis (CF). Respiratory tract infection by B. cenocepacia in CF patients is often associated with a decline in respiratory function, and can result in acute systemic infection. Burkholderia cenocepacia strain K56-2 is part of the epidemic and clinically problematic ET12 lineage. Two type IV secretion systems have been identified in this strain; one system is plasmid encoded (designated the Ptw type IV secretion system) whereas the other is chromosomally encoded (designated the VirB/D type IV secretion system) and shows homology to the Agrobacterium tumefaciens VirB/D4 type IV secretion system. It was determined that the plasmid encoded Ptw system is a chimeric type IV secretion system composed of VirB/D4-like elements and F-specific subunits. More recently, it was found that this system translocates a protein effector (PtwE1) that is cytotoxic to plant cells. It was also determined that the positively charged C-terminal region of PtwE1 is important for translocation via the Ptw type IV secretion system. Strains of the epidemic B. cenocepacia PHDC lineage contain only a chromosomal VirB/D4-like type IV secretion system (designated BcVirB/D); and a putative effector protein associated with this system has been identified that has C-terminal transport signal and sequences different from the effectors of the Ptw type IV secretion system. It has also been shown that a competing plasmid substrate and a plasmid fertility inhibition factor act to render B. cenocepacia of the PHDC lineage incapable of expressing a plant phenotype. Thus, three type IV secretion systems have been identified in epidemic B. cenocepacia lineages. From two of these, an effector has been identified that has cytotoxic effects on eukaryotic cells, and at least one of these type IV secretion systems is able to translocate DNA substrates.
|
2 |
Role of type IV secretion systems in trafficking of virulence determinants of Burkholderia cenocepaciaEngledow, Amanda Suzanne 02 June 2009 (has links)
Type IV secretion systems have been identified in several human pathogens including Bordetella pertussis, Helicobacter pylori, and Legionella pneumophila. These systems are responsible for the translocation of virulence proteins and/or DNA, thereby playing an important role in the pathogenesis of infection and plasticity of genomes. Burkholderia cenocepacia is an important opportunistic human pathogen, particularly in persons with cystic fibrosis (CF). Respiratory tract infection by B. cenocepacia in CF patients is often associated with a decline in respiratory function, and can result in acute systemic infection. Burkholderia cenocepacia strain K56-2 is part of the epidemic and clinically problematic ET12 lineage. Two type IV secretion systems have been identified in this strain; one system is plasmid encoded (designated the Ptw type IV secretion system) whereas the other is chromosomally encoded (designated the VirB/D type IV secretion system) and shows homology to the Agrobacterium tumefaciens VirB/D4 type IV secretion system. It was determined that the plasmid encoded Ptw system is a chimeric type IV secretion system composed of VirB/D4-like elements and F-specific subunits. More recently, it was found that this system translocates a protein effector (PtwE1) that is cytotoxic to plant cells. It was also determined that the positively charged C-terminal region of PtwE1 is important for translocation via the Ptw type IV secretion system. Strains of the epidemic B. cenocepacia PHDC lineage contain only a chromosomal VirB/D4-like type IV secretion system (designated BcVirB/D); and a putative effector protein associated with this system has been identified that has C-terminal transport signal and sequences different from the effectors of the Ptw type IV secretion system. It has also been shown that a competing plasmid substrate and a plasmid fertility inhibition factor act to render B. cenocepacia of the PHDC lineage incapable of expressing a plant phenotype. Thus, three type IV secretion systems have been identified in epidemic B. cenocepacia lineages. From two of these, an effector has been identified that has cytotoxic effects on eukaryotic cells, and at least one of these type IV secretion systems is able to translocate DNA substrates.
|
3 |
Characterization of interactions of the Type IV secretion system core component VirB8Sivanesan, Durga 09 1900 (has links)
<p> Type IV secretion systems (T4SS) are essential for the virulence of many gram-negative
pathogens. The systems studied here comprise eleven VirB proteins in case of
Agrobacterium tumefaciens and twelve in case of Brucella suis. The VirB proteins
associate in the cell envelope and form a complex that mediates the translocation of
virulence factors into host cells. In this report, VirB8, a core component of T4SS, is
characterized with regards to its interaction with itself and with other VirB proteins. </p> <p> VirB8 was found to exist in monomer-dimer equilibrium and the self-association
was demonstrated by analytical ultracentrifugation, analytical gel filtration, surface
plasmon resonance and bacterial two-hybrid assay. The above experiments demonstrated
that residues M102, Y105 and E214 o fVirB8 from B. suis are involved in self-association
and mutagenesis of these residues led to the impairment of T4SS function in B. suis.
Furthermore, this information was utilized to unravel the contribution of VirB8 self-association
towards T4SS assembly and function. To this end dimerization variants of
VirB8 from Agrobacterium tumefaciens were created and the effects were assessed with
purified proteins in vitro. Following this, the effects of VirB8 dimer site changes were
assessed in vivo. Introduction of a cysteine residue at the predicted interface (V97C)
supported DNA transfer but not T-pilus formation. Variants that reduced the self-association
did not support T4SS functions and T-pilus formation. Moreover, VirB2-
VirB5 co-fractionated with high molecular mass components from membranes of A.
tumefaciens and VirB8 dimerization was shown to be necessary for VirB2 association
with the high molecular mass components. Using purified VirB8 and VirB5 it was shown that VirB5 interacts with VirB8 via its globular domain and this interaction dissociates
VirB8 dimers. Taking these results together, a mechanistic contribution of VirB8
dimerization to T4SS assembly was proposed. </p> <p> Next, the interactions of VirB8 with other core components (VirB9 and VirBlO)
were analyzed by using various in vitro and in vivo experiments. Purified soluble
periplasmic domains of VirB8, VirB9 and VirB10 were used in enzyme-linked
immunosorbent assays, circular dichroism, and surface plasmon resonance experiments.
The pair-wise interactions and self-association of VirB8, VirB9 and VirB 10 were
demonstrated with the in vitro experiments. In addition, a ternary complex formation
between VirB8, VirB9, and VirBlO was identified. Using the bacterial two-hybrid
system, the dynamics of the interactions between VirB8-VirB9-VirB 10 full-length
proteins were analyzed demonstrating that VirB9 stimulates VirB8 self-association, but
that it inhibits the VirB10-VirB10 as well as the VirB8-VirB10 interaction. Based on
these results, a dynamic model for secretion system assembly is proposed where VirB8
plays a role as an assembly factor that is not closely associated with the functional core
complex comprising VirB9 and VirB10. </p> <p> The work reported in this thesis advances the understanding of VirB8 self-association
and its contribution to T4SS assembly and function. Furthermore, the
establishment of the bacterial two-hybrid system to detect VirB interactions has helped
identify inhibitors for the VirB8 dimerization through collaboration with Dr. Athanasios
Paschos. Moreover, techniques such as ELISA, analytical ultracentrifugation, circular dichroism and surface plasmon resonance will be utilized routinely to characterize other
VirB-VirB interactions in future. </p> / Thesis / Doctor of Philosophy (PhD)
|
4 |
The Role of Cellular Autophagy and Type IV Secretion System in <i>Anaplasma phagocytophilum</i> InfectionNiu, Hua 21 August 2008 (has links)
No description available.
|
5 |
Roles of Type IV Secretion Effector Etf-2 and Etf-3 in Ehrlichia chaffeensis InfectionYan, Qi January 2020 (has links)
No description available.
|
6 |
Transcriptional regulators of <i>Ehrlichia chaffeensis</i> during intracellular development and the roles of OmpA in the bacterial infection and survivalCheng, Zhihui 08 December 2008 (has links)
No description available.
|
7 |
Characterization of structure, dynamics, function and interactions of components from the type IV secretion system of Xanthomonas citri by solution nuclear magnetic resonance / Caracterização da estrutura, dinâmica, interações e função de componentes do sistema de secreção tipo IV de Xanthomonas citri por ressonância magnética nuclear em soluçãoOliveira, Luciana Coutinho de 01 February 2016 (has links)
Bacteria use specialized systems, called secretion systems, in order to translocate substrates to the environment or to other cells, or even to uptake molecules from the exterior environment. Six different secretion systems have been described in Gram-negative bacteria. The Type IV Secretion System (T4SS) is involved in translocation of virulence factors, bacterial conjugation, uptake and release of DNA, and in the secretion of antibacterial toxins. The T4SS channel corresponds to a toroidal upramolecular complex consisting of 14 repetitions of the VirB7-VirB9-VirB10 heterotrimer. This channel, also called \"core complex\", is divided in two layers, an outer layer consisting of the VirB7 lipoprotein in complex with the C-terminal domains of VirB9 (VirB9CT) and VirB10 (VirB10CT), and an inner layer composed by the N-terminal domains of VirB9 (VirB9NT) and VirB10 (VirB10NT). Xanthomonas citri pv. citri (Xac) is a gram-negative bacterium that infects citrus plants causing a disease called \"citrus canker\". Although not directly involved in causing the disease, the chromosomally encoded T4SS is responsible for the secretion of toxins, working as a bacterial killing machine (Souza et al., 2015). The three-dimensional structure of Xac\'s VirB7 obtained by Nuclear Magnetic Resonance (NMR) spectroscopy (PDB 2L4W) revealed that, unlike the canonical VirB7, Xac\'s VirB7 consists of a flexible N-terminal domain followed by a C-terminal globular domain. The flexible N-terminal tail is involved in interaction with VirB9CT. In this thesis, the NMR structure of the complex formed between VirB9CT and a peptide derived from the N-terminal tail of Xac-VirB7 (VirB7NT) was solved. This complex is stabilized by hydrophobic interactions involving the side chains of particular amino acid residues such as Phe30, Trp34 and Val37 in VirB7, and Arg250, Tyr167 and Tyr169 in VirB9. Mutations of such amino acids affect not only the stability of the VirB9:VirB7 complex in vitro, but also reduce the T4SS activity and impairs its assembly in vivo. Furthermore, the ability of forming VirB7:VirB7 oligomers is essential for a functional T4SS, although it is not required for assembling the complex. The structural propensity and flexibility of a fragment derived from the proline-rich region (PRR) of the N-terminal tail of VirB10 (VirB10NT - residues 85 to 182) were studied. Measurements of the {1H}-15N heteronuclear NOE showed that VirB10NT is highly flexible on a sub-nanosecond time scale. Analysis of chemical shifts and NOEs showed that the ensemble and time average conformation of VirB10NT consists of a short alpha helix between residues 151-163, and that this helix is involved in interactions with VirB9NT. These findings provide the first compelling evidence for the interaction between the N-terminal domains of VirB9 and VirB10, and for the existence of significant flexibility within Xacs T4SS. / Bactérias usam sistemas especializados, denominados sistemas de secreção, a fim de translocar substratos para o ambiente ou para outras células, ou até mesmo para capturar moléculas do meio externo. Seis diferentes sistemas de secreção foram descritos em bactérias gram-negativas. O Sistema de Secreção do Tipo IV (T4SS) está envolvido na translocação de fatores de virulência, conjugação bacteriana, absorção e liberação de DNA, e secreção de toxinas antibacterianas. O canal do T4SS (core complex) corresponde a um complexo formado por 14 repetições do heterotrimero VirB7-VirB9-VirB10. A camada externa deste canal é constituída por VirB7 em complexo com os domínios C-terminal de VirB9 (VirB9CT) e VirB10 (VirB10CT). Os domínios N-terminal de VirB9 (VirB9NT) e VirB10 (VirB10NT) formam a camada interna do core complex. Xanthomonas citri pv. citri (Xac) é uma bactéria gram-negativa que infecta plantas cítricas causando uma doença chamada \"cancro cítrico\". Embora não esteja diretamente envolvido na infecção, o T4SS cromossomal secreta toxinas capazes de matar outras bactérias gram-negativas. VirB7 de Xac possui uma cauda N-terminal flexível e um domínio globular C-terminal ausente em outras proteínas VirB7. VirB7 interage com VirB9CT através de sua cauda N-terminal. Nesta tese, a estrutura de RMN do complexo formado por VirB9CT e um peptídeo derivado do segmento N-terminal de VirB7 foi resolvida. O complexo é estabilizado, principalmente, por interações hidrofóbicas envolvendo as cadeias laterais de determinados resíduos de aminoácidos, particularmente a Phe30, o Trp34 e a Val37 em VirB7 e a Arg250, a Tyr167 e a Tyr169 em VirB9. A substituição de alguns destes aminoácidos por alanina afeta não só a constante de dissociação do complexo in vitro, como também a atividade e a montagem do T4SS in vivo. Além disso, resíduos específicos envolvidos em oligomerização de VirB7 são essenciais para a manutenção de um T4SS funcional, embora não sejam essenciais para a montagem do sistema. Estudos estruturais, de dinâmica e de interações de um fragmento derivado da região rica em prolinas (proline-rich region - PRR) contida no N-terminal de VirB10 (VirB10NT - resíduos 85-182) também foram realizados. Medidas de {1H}-15N NOE heteronuclear mostraram que VirB10NT é altamente flexível. Análises de deslocamentos químicos e NOEs mostrou que VirB10NT forma uma hélice curta entre os resíduos 151-163. Ensaios de interação por RMN indicaram que esta hélice está envolvida em interações com VirB9NT. Estes resultados são a primeira evidência convincente para a especificidade de interação entre os domínios N-terminal de VirB9 e VirB10. Estes dados apontam também para a existência de flexibilidade dentro do T4SS de Xac.
|
8 |
Estudos estruturais e de interações proteína-proteína envolvendo componentes de um sistema de secreção do tipo IV de Xanthomonas axonopodis pv. citri / Structural and protein-protein interaction studies of type IV secretion system components from Xanthomonas axonopodis pv. citriSouza, Diorge Paulo de 25 May 2010 (has links)
Xanthomonas axonopodis pv. citri (Xac) é o causador do cancro de plantas cítricas. Entre os potenciais fatores de virulência codificados por Xac, está o Sistema de Secreção do Tipo IV (T4SS), um grande complexo multiprotéico que atravessa o periplasma e as membranas interna e externa de bactérias Gram-negativas. O T4SS está envolvido com secreção de proteínas e/ou DNA para o meio extracelular ou diretamente no interior da célula do hospedeiro. Este Sistema requer tipicamente 12 proteínas para realizar suas funções: VirB1-VirB11 e VirD4. O T4SS codificado pelo cromossomo de Xac está aparentemente incompleto, devido a não codificar nenhuma proteína com similaridade de seqüência a VirB7. Os objetivos deste trabalho são estudar a estrutura, função e interações das proteínas do T4SS de Xanthomonas. Foram clonados 23 genes que codificam proteínas ou domínios relacionados ao T4SS, e os polipeptídeos foram produzidos de forma recombinante em E. coli. Treze deles foram purificados e submetidos a estudos estruturais, espectroscópicos e de interações proteína-proteína. A estrutura em solução de Xac262224-139 foi resolvida, apresentando uma região N-terminal desenovelada de aproximadamente 30 resíduos e um domínio globular. Este polipeptídeo oligomeriza em troca química rápida na escala de tempo de RMN e o seu N-terminal desenovelado reconhece o domínio C-terminal de VirB9 (VirB9154-255) em troca lenta. Análise de RMN demonstrou que VirB9154-255 possui uma estrutura flexível em solução, sofrendo uma marcante mudança conformacional na presença de Xac262224-139. Ambas proteínas se tornam rígidas após a interação. Xac2622 é o equivalente a VirB7 em Xanthomonas, baseado na localização do seu gene no lócus do T4SS, localização subcelular predita do polipeptídeo codificado e sua interação com VirB9. Porém, diferente de outras proteínas da família VirB7, Xac2622 possui um domínio globular adicional, com topologia e estrutura similares a domínios presentes apenas em proteínas associadas à membrana externa de bactérias Gram-negativas. Nocaute do gene xac2622, contudo, não afetou a virulência de Xac na infecção de plantas de laranja pêra. O domínio enovelado de Xac2622 foi cristalizado, e os cristais obtidos difrataram até uma resolução de 1,0 Å, pertencendo ao grupo espacial C2221. O modelo preliminar possui Rfactor de 0,121 e Rfree de 0,147. Foram obtidos cristais de outras 3 proteínas relacionadas ao T4SS de Xac, porém somente um deles difratou em alta resolução (2,0 Å, pertencendo ao grupo espacial C2). O potencial sinal de secreção pelo T4SS de Xanthomonas é um domínio C-terminal conservado de aproximadamente 115 resíduos, encontrado nos substratos putativos do T4SS. Caracterizamos um destes domínios, presente na proteína Xac2609, e ele é intrinsicamente desestruturado. Essa observação pode ter implicações funcionais, visto que os substratos são desenovelados antes de sua passagem pelo canal de secreção do T4SS / Xanthomonas axonopodis pv. citri (Xac) is a gram-negative bacterial phytopathogen that infects citrus. One possible virulence determinant is a chromosomally encoded Type IV Secretion System (T4SS), a multiprotein complex that spans the bacterial periplasm and both inner and outer membranes. The T4SS is used by some bacteria to secrete proteins and/or DNA to the extracellular milieu or the host interior. The model T4SS from Agrobacterium tumefaciens is made up of twelve structural proteins: VirB1-VirB11 and VirD4. The Xanthomonas T4SS is apparently incomplete because of the lack of a polypeptide with sequence similarity to VirB7. The aim of this project is the study of structure-function relationships in the Xanthomonas T4SS. Twenty-three T4SS protein-coding genes, including full-length proteins or domains, were cloned and the proteins were produced in different E. coli strains. Thirteen polypeptides were purified and some of them were submitted to structural, spectroscopic and protein-protein interaction studies. We used NMR to solve the solution structure of Xac262224-139 which consists of an unfolded N-terminal segment of ~30 residues followed by a globular domain. Xac262224-139 oligomerizes in fast exchange at the NMR time scale and interacts via its unfolded N-terminus with the VirB9 C-terminus (VirB9154-255) in slow exchange. NMR analysis showed that VirB9154-255 has a flexible structure in solution. However, this polypeptide undergoes a significant conformational modification in the presence of Xac2622,24-139 and both proteins become rigid upon interaction. Xac2622 is the Xanthomonas VirB7, based on the chromosomal localization of its gene, predicted subcellular localization and protein interaction analysis. But surprisingly, unlike other VirB7 proteins, Xac2622 has an extra C-terminal folded domain whose topology and structure are strikingly similar to that of periplasmic domains found in outer membrane proteins of many bacterial Secretion Systems. Knockout of the xac2622 gene, however, does not affect the Xac virulence in orange leaf infection assays. The Xac2622 folded domain was also crystallized, and these crystals diffracted up to 1.0 Å resolution and belong to the space group C2221. The preliminary refined model has Rfactor of 0.121 and Rfree of 0.147. Crystals of three other T4SS proteins have been obtained, but only one of them diffracted to high resolution (2.0 Å; space group C2). Xac2610 is a hypothetical protein whose gene is located in the T4SS locus, and its interactions were studied with VirB9, VirB11 and Xac2609, a putative T4SS substrate. The potential T4SS secretion signal is a conserved, approximately 115 residues, C-terminal domain found in the putative substrates of the Xanthomonas T4SS. This sequence mediates interactions with VirD4. We have characterized this domain from one substrate and it is mainly unfolded. This observation may have functional implications, as the substrates are unfolded before their secretion through the T4SS channel
|
9 |
Characterization of structure, dynamics, function and interactions of components from the type IV secretion system of Xanthomonas citri by solution nuclear magnetic resonance / Caracterização da estrutura, dinâmica, interações e função de componentes do sistema de secreção tipo IV de Xanthomonas citri por ressonância magnética nuclear em soluçãoLuciana Coutinho de Oliveira 01 February 2016 (has links)
Bacteria use specialized systems, called secretion systems, in order to translocate substrates to the environment or to other cells, or even to uptake molecules from the exterior environment. Six different secretion systems have been described in Gram-negative bacteria. The Type IV Secretion System (T4SS) is involved in translocation of virulence factors, bacterial conjugation, uptake and release of DNA, and in the secretion of antibacterial toxins. The T4SS channel corresponds to a toroidal upramolecular complex consisting of 14 repetitions of the VirB7-VirB9-VirB10 heterotrimer. This channel, also called \"core complex\", is divided in two layers, an outer layer consisting of the VirB7 lipoprotein in complex with the C-terminal domains of VirB9 (VirB9CT) and VirB10 (VirB10CT), and an inner layer composed by the N-terminal domains of VirB9 (VirB9NT) and VirB10 (VirB10NT). Xanthomonas citri pv. citri (Xac) is a gram-negative bacterium that infects citrus plants causing a disease called \"citrus canker\". Although not directly involved in causing the disease, the chromosomally encoded T4SS is responsible for the secretion of toxins, working as a bacterial killing machine (Souza et al., 2015). The three-dimensional structure of Xac\'s VirB7 obtained by Nuclear Magnetic Resonance (NMR) spectroscopy (PDB 2L4W) revealed that, unlike the canonical VirB7, Xac\'s VirB7 consists of a flexible N-terminal domain followed by a C-terminal globular domain. The flexible N-terminal tail is involved in interaction with VirB9CT. In this thesis, the NMR structure of the complex formed between VirB9CT and a peptide derived from the N-terminal tail of Xac-VirB7 (VirB7NT) was solved. This complex is stabilized by hydrophobic interactions involving the side chains of particular amino acid residues such as Phe30, Trp34 and Val37 in VirB7, and Arg250, Tyr167 and Tyr169 in VirB9. Mutations of such amino acids affect not only the stability of the VirB9:VirB7 complex in vitro, but also reduce the T4SS activity and impairs its assembly in vivo. Furthermore, the ability of forming VirB7:VirB7 oligomers is essential for a functional T4SS, although it is not required for assembling the complex. The structural propensity and flexibility of a fragment derived from the proline-rich region (PRR) of the N-terminal tail of VirB10 (VirB10NT - residues 85 to 182) were studied. Measurements of the {1H}-15N heteronuclear NOE showed that VirB10NT is highly flexible on a sub-nanosecond time scale. Analysis of chemical shifts and NOEs showed that the ensemble and time average conformation of VirB10NT consists of a short alpha helix between residues 151-163, and that this helix is involved in interactions with VirB9NT. These findings provide the first compelling evidence for the interaction between the N-terminal domains of VirB9 and VirB10, and for the existence of significant flexibility within Xacs T4SS. / Bactérias usam sistemas especializados, denominados sistemas de secreção, a fim de translocar substratos para o ambiente ou para outras células, ou até mesmo para capturar moléculas do meio externo. Seis diferentes sistemas de secreção foram descritos em bactérias gram-negativas. O Sistema de Secreção do Tipo IV (T4SS) está envolvido na translocação de fatores de virulência, conjugação bacteriana, absorção e liberação de DNA, e secreção de toxinas antibacterianas. O canal do T4SS (core complex) corresponde a um complexo formado por 14 repetições do heterotrimero VirB7-VirB9-VirB10. A camada externa deste canal é constituída por VirB7 em complexo com os domínios C-terminal de VirB9 (VirB9CT) e VirB10 (VirB10CT). Os domínios N-terminal de VirB9 (VirB9NT) e VirB10 (VirB10NT) formam a camada interna do core complex. Xanthomonas citri pv. citri (Xac) é uma bactéria gram-negativa que infecta plantas cítricas causando uma doença chamada \"cancro cítrico\". Embora não esteja diretamente envolvido na infecção, o T4SS cromossomal secreta toxinas capazes de matar outras bactérias gram-negativas. VirB7 de Xac possui uma cauda N-terminal flexível e um domínio globular C-terminal ausente em outras proteínas VirB7. VirB7 interage com VirB9CT através de sua cauda N-terminal. Nesta tese, a estrutura de RMN do complexo formado por VirB9CT e um peptídeo derivado do segmento N-terminal de VirB7 foi resolvida. O complexo é estabilizado, principalmente, por interações hidrofóbicas envolvendo as cadeias laterais de determinados resíduos de aminoácidos, particularmente a Phe30, o Trp34 e a Val37 em VirB7 e a Arg250, a Tyr167 e a Tyr169 em VirB9. A substituição de alguns destes aminoácidos por alanina afeta não só a constante de dissociação do complexo in vitro, como também a atividade e a montagem do T4SS in vivo. Além disso, resíduos específicos envolvidos em oligomerização de VirB7 são essenciais para a manutenção de um T4SS funcional, embora não sejam essenciais para a montagem do sistema. Estudos estruturais, de dinâmica e de interações de um fragmento derivado da região rica em prolinas (proline-rich region - PRR) contida no N-terminal de VirB10 (VirB10NT - resíduos 85-182) também foram realizados. Medidas de {1H}-15N NOE heteronuclear mostraram que VirB10NT é altamente flexível. Análises de deslocamentos químicos e NOEs mostrou que VirB10NT forma uma hélice curta entre os resíduos 151-163. Ensaios de interação por RMN indicaram que esta hélice está envolvida em interações com VirB9NT. Estes resultados são a primeira evidência convincente para a especificidade de interação entre os domínios N-terminal de VirB9 e VirB10. Estes dados apontam também para a existência de flexibilidade dentro do T4SS de Xac.
|
10 |
Structural and Biochemical Characterization of VirB8 Protein in Type IV Secretion SystemsSharifahmadian, Mahzad 07 1900 (has links)
Secretion is the passage of macromolecules across cellular membranes. In bacteria, secretion is essential for virulence and survival. Gram-negative bacteria use specialized envelope-spanning multiprotein complexes to secrete macromolecules called type IV secretion system (T4SS). T4SSs mediate the secretion of monomeric proteins, multisubunit protein toxins and nucleoprotein complexes. Also, they contribute to the horizontal spread of plasmid-encoded antibiotic resistance genes. Consequently, they are potential targets for antivirulence drugs. Gram- negative bacteria have two membranes that the secretion complex spans. As a result, the T4SS consists of proteins inserted in the membranes and of soluble proteins that face into or out of the bacterial cell. The details of channel assembly and structure are not known, although recent advances have revealed the structure of the core secretion channel. VirB8 is an inner membrane protein of the complex that interacts with many other T4SS subunits and works as nucleation factor for T4SS channel assembly. Biophysical studies and NMR experiments in particular were conducted to characterize the structural aspects of VirB8 interactions. Dynamic regions of VirB8 during monomer-to-dimer transition were identified by NMR spectroscopy. X-ray crystal and NMR analyses revealed structural differences at the helical regions (α-1 and α-4) of wild-type VirB8 and its monomeric variant VirB8M102R. Fragment screening identified small molecules binding to the wild-type and monomeric variant. In silico docking analyses suggested that the surface groove in the VirB8 structure is important for effective binding of the small molecules. NMR experiments and biochemical assays demonstrated that the β-sheet domain (β1 in particular) is the binding interface of VirB8 for the interaction with VirB10. The identified interface has functional importance for T4SS-mediated conjugation. In addition, I used NMR spectroscopy to identify changes in the structure of VirB8 upon interaction with VirB5. Altogether, structural and biochemical studies on periplasmic and full length VirB8 enabled us to characterize the sequence of interactions between VirB8 and other VirB proteins during T4SS complex assembly and function. The results of this research may lead to an innovative strategy for the development of novel antimicrobial drugs. / La sécrétion est le passage de macromolécules à travers les membranes cellulaires. Chez les
bactéries, la sécrétion est essentielle pour la virulence et la survie. Les bactéries à Gramnégatif
utilisent le système de sécrétion de type IV (SST4) pour la sécrétion de toxines et de
nucléoprotéines. Les SST4 contribuent notamment à la propagation des gènes de résistance aux
antibiotiques. Pour cette raison, les composants du SST4 sont des cibles potentielles pour le
développement de médicaments antivirulence. Le SST4 est un complexe protéique qui s’étend
entre la double membrane de la bactérie à Gram-négatif. Les protéines qui le composent sont
insérées dans les membranes cellulaires ou solubles. Bien que la structure du pore central du
SST4 ait été résolue récemment, les détails de l'assemblage et la structure de ce complexe ne
sont pas connus. VirB8 est une protéine de la membrane interne qui interagit avec de
nombreuses autres sous-unités du SST4. Il s’agit d’un acteur central de l'assemblage du SST4.
Des études biophysiques, et notamment des expériences de RMN ont ainsi été réalisées pour
caractériser les aspects structuraux des interactions avec VirB8. Des regions dynamiques dans
la structure de VirB8 ont été identifiées par spectroscopie RMN lors de la transition entre la
forme monomérique et dimérique. Les analyses de cristallographie et de RMN ont révélé des
différences structurales dans les régions hélicoïdales (α1 et α4) de VirB8 wild-type et du variant
monomérique VirB8M102R. Le criblage de fragments a permis d’identifier de petites molécules
capables de se lier à VirB8 ainsi qu’au variant monomérique. Les analyses d’arrimage
moléculaire in silico suggèrent que la rainure de surface dans la structure VirB8 est importante
pour laliaison de ces petites molécules. Les expériences de RMN et les essais biochimiques
révèlent que le feuillet β (β1 en particulier) constitue l'interface d’interaction entre VirB8 et VirB10. Cette interface d’interaction est d’ailleurs importante pour la conjugaison du SST4. De
plus, j'ai identifié des changements dans la structure de VirB8 lors de l'interaction avec VirB5.
Les études sur la protéine VirB8 nous ont permis de caractériser la séquence d'événements
entre VirB8 et d'autres protéines VirB, régulant l'assemblage et la fonction du SST4.
|
Page generated in 0.0752 seconds