Spelling suggestions: "subject:"type N"" "subject:"mype N""
11 |
Tensile-strained and highly n-doped Germanium for optoelectronic applicationsZrir, Mohammad ali 18 September 2015 (has links)
Dans le cadre de ce travail de thèse, nous avons étudié une approche permettant de réaliser les composants d'émission de la lumière basés sur les couches epitaxiées de Ge contraint en tension et fortement dopé de type n. Afin de créer de contrainte en tension dans les films épitaxiés de Ge, nous avons investi deux méthodes : faire croître du Ge sur InGaAs ayant un paramètre de maille plus grand que celui de Ge, et faire croître du Ge sur Si, en prenant l'avantage du coefficient de dilatation thermique du Ge, qui est deux fois plus grand que celui du Si. Concernant la croissance de Ge sur les substrats Si, nous avons étudié deux orientations cristallines, <001> and <111>, afin de pouvoir comparer la valeur de contrainte en tension obtenue et aussi la densité des dislocations émergeantes. Le dopage de type n dans le Ge a été effectué en utilisant le phosphore et l'antimoine. Nous avons montré que quand le dopage est effectué à des températures relativement basses et suivi d'un recuit thermique rapide, de concentration d'électrons électriquement activés de ~ 4x10^19 cm-3, a pu être obtenue. Cette valeur représente l'un des meilleurs résultats expérimentalement obtenus jusqu'à présent. Des mesures de recombinaison radiative par spectroscopie de photoluminescence effectuées à température ambiante ont mis en évidence une augmentation de l'émission du gap direct de Ge d'environ 150 fois. Finalement, nous avons étudié les effets de la barrière de diffusion sur l'efficacité de dopage pendant les recuits thermiques. Une comparaison sur l'efficacité de trois barrières de diffusion, Al2O3, HfO2 and Si3N4, sera présentée et discutée. / During my thesis, we studied approaches to achieve light-emitting devices based on tensile strained and highly n-doped Ge epitaxial films. In order to create an elastic tensile strain in the epitaxial Ge films, we have investigated two methods: The epitaxial growth of Ge on InGaAs buffer layers that have a larger lattice constant, and the epitaxial growth of Ge on Si, by which we take benefit of the thermal expansion coefficient of Ge which is twice greater than that of Si. Concerning the growth of Ge on Si substrates, we have studied two crystalline orientations, <001> and <111>, in order to compare the values of the accumulated tensile strain and also the density of threading dislocations. The n-type doping in Ge was performed using a co-doping technique with phosphorus (P2 molecule) and antimony (Sb). We demonstrated that the dopants sticking coefficient leads to dopant incorporation in the Ge film larger than their solid solubility, which generally increases with increasing substrate temperature. As a result, when the doping is carried out at relatively low temperatures and followed by rapid thermal annealing, electrically activated electron concentration of 4x1019 cm-3 was demonstrated. This value is one of the best results obtained experimentally so far. The radiative recombination, at RT, measured by photoluminescence spectroscopy showed an increase in the direct gap emission of Ge of about 150 times. Finally, we studied the effects of diffusion barrier on the doping concentration during the thermal annealing. A comparison between the advantages of three diffusion barriers, Al2O3, HfO2 and Si3N4, will be presented and discussed.
|
12 |
Etude et optimisation d'un procédé plasma basse puissance pour le dépôt de ZnO dopé et non dopé à propriétés photovoltaïques à partir d'une solution aqueuse / Study and optimization of a low power plasma reactor for the deposition of ZnO doped and undoped with photovoltaic properties from an aqueous solutionMa, Alexandre 10 December 2015 (has links)
Ce travail de thèse s'insère dans la Recherche et Développement du Photovoltaïque. L'objectif était d'étudier, développer et optimiser un nouveau procédé plasma de dépôt pour l'élaboration de couches minces d'oxyde de zinc (ZnO) pour l'application de couche fenêtre dans les cellules solaires de type Cu(In,Ga)Se2. La particularité de ce procédé est de réaliser rapidement des couches d'oxyde (≥ 0,6 nm/s) à partir d'une solution aqueuse de précurseurs non toxiques, interagissant, sous forme de gouttes, avec le plasma. La faisabilité du dépôt de ZnO par le réacteur plasma basse puissance (LPPR) a été vérifiée en obtenant des couches de ZnO homogènes, cristallines et transparentes grâce à l'optimisation des paramètres du réacteur. Le diagnostic du réacteur plasma et la modélisation/simulation du réacteur nous ont permis de constater que l'état physique et la taille des gouttes influent sur la qualité des couches d'oxyde. Des cellules solaires ont été réalisées permettant de valider la qualité des couches de ZnO obtenues via notre procédé plasma. Les meilleurs rendements sont d'environ 14 % ce qui est très prometteur pour les recherches futurs. L'étude du dopage de type N du ZnO a été abordé dans le but de réaliser une couche fenêtre complète par le réacteur LPPR. Cependant beaucoup d'améliorations et d'études restent à faire telles que la mise en place d'un système d'injection sophistiqué, ou encore l'investigation approfondie sur le dopage. Néanmoins une étude des coûts matières/énergie du procédé a été réalisée afin de pouvoir positionner le réacteur plasma parmi les autres techniques employées pour la réalisation de cellules CIGS. / This work is part of the Research and Development of Photovoltaic. The aim was to study, develop and optimize a new deposition plasma process for the elaboration of zinc oxide thin layers (ZnO) as the window layer in Cu(In,Ga)Se2 solar cells of. The particularity of this process is to quickly realize oxide layers (≥ 0.6 nm/s) from an aqueous solution of non-toxic precursors, interacting in the form of droplets, with the plasma. The feasibility of the ZnO deposition by the low power plasma reactor (LPPR) was checked by obtaining homogeneous, crystalline and transparent layers of ZnO thanks to the optimization of reactor parameters. The diagnostic and modeling / simulation of the plasma reactor allowed us to see that the physical state and droplet size affect the quality of the oxide layers. Solar cells were created to validate the quality of ZnO layers obtained via our plasma process. The best obtained efficiency is about 14% which is very promising for future research. The study of doping N type ZnO was addressed in order to achieve a complete window layer by LPPR reactor. However many improvements and studies are still needed, such as the establishment of a sophisticated injection system, or the thorough investigation on doping. Nevertheless a cost study about material/energy of the process was conducted in order to place the plasma reactor among other techniques used for the production of CIGS solar cells.
|
13 |
Silicium de type n pour cellules à hétérojonctions : caractérisations et modélisations / N type silicon for heterojunctions photovoltaic solar cells : characterizations and modelingFavre, Wilfried 30 September 2011 (has links)
Les cellules à hétérojonctions de silicium fabriquées par croissance de couches minces de silicium amorphe hydrogéné (a-Si :H) à basse température sur des substrats de silicium cristallin (c-Si) peuvent atteindre des rendements de conversion photovoltaïque élevés (η=23 % démontré). Les efforts de recherche ayant principalement été orientés vers le cristallin de type p jusqu'à présent en France, ce travail s'attache à l'étude du type n pour d'une part déterminer les performances auxquelles s'attendre avec cette nouvelle filière et d'autre part les améliorer. Pour cela, nous avons mis en œuvre des techniques de caractérisation des matériaux composant la structure et de l’interface (a-Si :H/c-Si) couplées à des outils de simulations numériques afin mieux comprendre les phénomènes de transport électronique. Nous nous sommes également intéressés aux cellules à hétérojonctions avec substrats de silicium multicristallin de type n, le silicium multicristallin étant le matériau le plus répandu actuellement dans la fabrication des cellules photovoltaïques. / In this thesis we focus on the silicon heterostructure combining thin films amorphous silicon (a-Si :H) deposited at low temperature on crystalline silicon (c-Si) substrates. We study the different materials and the interface between them through both characterizations, modelling and numerical simulations. The goal is to better understand the influence of the different parameters (doping level, defects density, band offset, ...) on the photovoltaic solar cell's performances in order to get them improved. Structures with multicrystalline silicon substrates are also studied.
|
14 |
Identification and neutralization of lifetime-limiting defects in Czochralski silicon for high efficiency photovoltaic applications / Identification et neutralisation des défauts limitant les propriétés électriques du silicium Czochralski pour applications photovoltaïquesLetty, Elénore 19 October 2017 (has links)
Les cellules photovoltaïques à base de silicium cristallin représentent plus de 90% du marché photovoltaïque mondial. Des architectures de cellules à haut rendement de conversion sont actuellement développées. Pour atteindre leurs performances maximales, ces architectures nécessitent néanmoins une amélioration des propriétés électriques des substrats de silicium cristallin. Les objectifs de cette thèse sont d’identifier les défauts limitant les propriétés électriques de ces substrats, de comprendre les mécanismes menant à leur formation et de proposer des moyens permettant leur neutralisation. Les matériaux étudiés sont des plaquettes de silicium Czochralski de type n, généralement utilisé pour les applications à haut rendement. Le four de tirage Czochralski a d’abord été modélisé afin de comprendre comment le passé thermique subi par le lingot de silicium lors de la cristallisation affecte la génération des défauts. Ces travaux ont été confirmés via des confrontations avec des données expérimentales, en utilisant une méthode originale développée dans le cadre de ce travail. Nous avons ensuite étudié l’influence du budget thermique lié aux procédés de fabrication des cellules sur la population de défauts. Nous avons ainsi pu montrer que la nature des défauts limitant les propriétés électriques du silicium était grandement modifiée selon le procédé de fabrication de cellules utilisé. Nous avons en outre mis en évidence une dégradation inattendue des propriétés électriques du silicium Czochralski de type n sous illumination, liée à la formation d’un défaut volumique inconnu. Les conditions de formation et de suppression de ce défaut ont été étudiées en profondeur. Enfin, les principaux défauts limitant les propriétés électriques du silicium ayant été identifiés et les mécanismes menant à leur formation compris, nous proposons dans un dernier chapitre des nouvelles techniques de caractérisation permettant de détecter les plaquettes défectueuses en début de ligne de production de cellules photovoltaïques, et ce à une cadence industrielle. / Photovoltaic solar cells based on crystalline silicon represent more than 90% of the worldwide photovoltaic market. High efficiency solar cell architectures are currently being developed. In order to allow their maximal performances to be reached, the electronic properties of their crystalline silicon substrate must however be enhanced. The goals of the present work are to identify the defects limiting the electronic properties of the substrate, to understand the mechanisms leading to their formation and to propose routes for their neutralization. The studied materials are n-type Czochralski silicon wafers, usually used as substrates for high efficiency photovoltaic applications. The Czochralski puller was first modeled in order to understand how the thermal history experienced by the silicon ingot during crystallization affects the defects generation. This study were validated through the comparison with experimental data using an original method developed in the frame of this work. We then studied the influence of the thermal budget associated to solar cell fabrication processes on the defects population. We thus showed that the nature of lifetime-limiting defects was completely changed depending on the solar cell fabrication process. Besides, we evidenced an unexpected degradation of the electronic properties of n-type Czochralski silicon under illumination, related to the formation of an unknown bulk defect. The formation and deactivation features of this defect were extensively studied. Finally, the main limiting defects being identified and the mechanisms resulting in their formation understood, we propose in a last chapter new characterization techniques for the detection of defective wafers at the beginning of production lines at an industrial throughput.
|
15 |
Propriétés électriques du ZnO monocristallinBrochen, Stéphane 13 December 2012 (has links) (PDF)
L'oxyde de zinc ZnO, est un semiconducteur II-VI très prometteur pour les applications en opto-électronique dans le domaine UV, notamment pour la réalisation de dispositifs électroluminescents (LED). Les potentialités majeures du ZnO pour ces applications résident notamment dans sa forte liaison excitonique (60 meV), sa large bande interdite directe (3.4 eV), la disponibilité de substrats massifs de grand diamètre ainsi que la possibilité de réaliser des croissances épitaxiales de très bonne qualité en couches minces ou nano structurées (nanofils). Néanmoins, le développement de ces applications est entravé par la difficulté de doper le matériau de type p. L'impureté permettant d'obtenir une conductivité électrique associée à des porteurs de charges positifs (trous), et donc la réalisation de jonctions pn à base de ZnO, n'a pas encore été réellement identifiée. C'est pourquoi une des étapes préliminaires et nécessaires à l'obtention d'un dopage de type p fiable et efficace, réside dans la compréhension du dopage résiduel de type n, ainsi que des phénomènes de compensation et de passivation qui sont mis en jeu au sein du matériau. La maîtrise de la nature des contacts (ohmique ou Schottky) sur différentes surfaces d'échantillons de ZnO nous a permis dans ce but de mettre en œuvre à la fois des mesures de transport (résistivité et effet Hall) et des mesures capacitives (capacité-tension C(V), Deep Level Transient Spectroscopy (DLTS) et Spectroscopie d'admittance).Dans un premier temps, nous avons donc cherché à comprendre de manière approfondie les propriétés électriques du ZnO massif. Nous avons ainsi étudié le rôle des défauts profonds et peu profonds sur la conductivité des échantillons, aux travers de différents échantillons massifs obtenus par synthèse hydrothermale ou par croissance chimique en phase vapeur. Nous avons également étudié l'impact de la température de recuits post-croissance, sur les propriétés de transport des échantillons. A la lumière des résultats obtenus sur le dopage résiduel de type n des échantillons de ZnO massifs, nous avons ensuite procédé à différents essais de dopage de type p du ZnO par implantation ionique d'azote et par diffusion en ampoule scellée d'arsenic. L'impureté azote a été choisie dans le cadre d'une substitution simple de l'oxygène qui devrait permettre de créer des niveaux accepteurs dans la bande interdite du ZnO. Nous avons également étudié l'impureté arsenic, qui selon un modèle théorique peut former un complexe qui permet d'obtenir un niveau accepteur plus proche de la bande de valence que le niveau. Outres les études réalisées sur les échantillons de ZnO massif et les essais de dopage de type p, nous avons également étudié les propriétés électriques d'échantillons de ZnO monocristallins sous forme de couches minces obtenues par croissance en phase vapeur d'organométalliques, dopées intentionnellement ou non. Les corrélations entres les mesures SIMS et C(V) nous ont permis notamment de mettre en évidence une diffusion et un rôle très importante de l'aluminium sur les propriétés électriques des couches minces de ZnO épitaxiées sur substrat saphir.Dans le cadre de cette thèse nous avons réussi à clarifier les mécanismes du dopage de type n, intentionnel ou non intentionnel, dans le ZnO monocristallin. Nous avons également identifié les impuretés et les paramètres de croissance importants permettant d'obtenir un dopage résiduel de type n le plus faible possible dans les couches épitaxiées. Cette maitrise du dopage résiduel de type n est une étape préliminaire indispensable aux études de dopage de type p car elle permet de minimiser la compensation des accepteurs introduits intentionnellement. Cette approche du dopage sur des couches minces de ZnO dont le dopage résiduel de type n est très faible apparait comme une voie très prometteuse pour surmonter les problèmes d'obtention du dopage de type p.
|
16 |
N and p-type doping of GaN nanowires : from growth to electrical properties / Nanofils de GaN dopés de type n et de type p : de la croissance aux propriétés électriquesFang, Zhihua 15 March 2017 (has links)
Les nanostructures à base de nitrures d’éléments III suscitent un intérêt croissant, en raison de leurs propriétés singulières et de leurs applications technologiques potentielles, dans les diodes électroluminescentes (LED) notamment. La maîtrise et le contrôle du dopage de ces nanostructures est un enjeu crucial, mais difficile. A ce sujet, cette thèse apporte une contribution nouvelle, en explorant le processus de dopage de type n et p des nanofils (NFs) de GaN crus par épitaxie par jets moléculaires (EJM). En particulier, les propriétés électriques de ces structures ont été caractérisées par une approche multi-technique, à l’échelle du NF unique.Tout d'abord, les propriétés structurales et électriques d'une série de NFs de GaN dopés au Si (type n) ont été étudiées. Des mesures de spectroscopie de rayons X à haute résolution sur des NFs individuels ont mis en évidence une incorporation de Si plus élevée dans les NFs que dans les couches minces épitaxiées, ainsi qu’une migration du Si à la surface du NF pour le fil ayant le niveau de dopage le plus élevé. Des mesures de transport sur des NFs uniques (quatre contacts avec une température allant de 300 K jusqu’à 5 K) ont démontré un contrôle du dopage, avec une résistivité allant de 10^2 à 10^-3 Ω.cm et une concentration de porteurs comprise entre 10^17 et 10^20 cm-3. Des mesures réalisées sur des transistors à effet de champ à NFs uniques non intentionnellement dopés ont démontré qu’ils sont de type n avec une mobilité de porteurs élevée.Parallèlement à cela, les conditions de croissance de NFs de GaN dopés au Mg (p-type) et de jonctions p-n ont été déterminées afin d’obtenir une incorporation significative en Mg. Les propriétés électriques de jonctions p-n axiale à base de NFs de GaN posées sur un substrat de SiO2 et contactés avec de l’oxyde d’indium-étain (ITO) ont été étudiées en utilisant la technique du courant induit par faisceau électronique (EBIC). L’analyse EBIC a permis de localiser la jonction p-n le long du fil et de clairement montrer son bon fonctionnement en polarisation directe ou inverse. L'analyse EBIC a démontré que le GaN de type p est hautement résistif, confirmant ainsi les difficultés à réaliser des mesures de transport sur ce matériau.Cette étude originale a permis de décrire les propriétés électriques et de dopage de ces NFs de GaN à une échelle nanoscopique, facilitant ainsi la fabrication des futurs dispositifs incorporant des nanostructures à base de GaN. / III-nitride nanostructures have been attracting increasing attention due to their peculiar properties and potential device applications as lighting LEDs. The control and evaluation of the doping in the nanostructures is a crucial, yet a challenging issue. This thesis advances the field by exploring the n and p type doping process of GaN nanowires (NWs) grown by molecular beam epitaxy (MBE). In particular, their electrical properties have been revealed through a multi-technique approach at the single NW level.Firstly, the structural and electrical properties of a series of Si-doped (n-type) GaN NWs have been studied. High resolution energy dispersive X-ray spectroscopy measurements on single NWs have illustrated the achievement of a higher Si incorporation in NWs than in epilayers, and Si segregation at the edge of the NW with the highest doping. Furthermore, direct transport measurements (four probes measurements from 300 K down to 5 K) on single NWs have shown a controlled doping with resistivity from 10^2 to 10^-3 Ω.cm, and a carrier concentration from 10^17 to 10^20 cm-3. Field effect transistor measurements have evidenced the n-type nature and a high electron mobility of the non-intentionally doped NWs.Secondly, the growth conditions of Mg-doped (p-type) and axial GaN p-n junction NWs have been determined to achieve significant Mg incorporation. Furthermore, the electrical properties of the axial GaN p-n junction NWs, dispersed on SiO2 and contacted by ITO, have been studied using electron beam induced current (EBIC) technique. EBIC technique revealed the location of the p-n junction and clearly demonstrated its operation under reverse and forward polarization. Moreover, EBIC showed highly resistive p-GaN in accordance with the difficulties to perform direct transport measurements on p-GaN NWs.This original study provides a nanoscale description of the electrical and doping properties of the GaN NWs, facilitating the fabrication of the future GaN nanostructures based devices.
|
17 |
Propriétés électriques du ZnO monocristallin / Electrical properties of ZnO single crystalBrochen, Stéphane 13 December 2012 (has links)
L’oxyde de zinc ZnO, est un semiconducteur II-VI très prometteur pour les applications en opto-électronique dans le domaine UV, notamment pour la réalisation de dispositifs électroluminescents (LED). Les potentialités majeures du ZnO pour ces applications résident notamment dans sa forte liaison excitonique (60 meV), sa large bande interdite directe (3.4 eV), la disponibilité de substrats massifs de grand diamètre ainsi que la possibilité de réaliser des croissances épitaxiales de très bonne qualité en couches minces ou nano structurées (nanofils). Néanmoins, le développement de ces applications est entravé par la difficulté de doper le matériau de type p. L'impureté permettant d'obtenir une conductivité électrique associée à des porteurs de charges positifs (trous), et donc la réalisation de jonctions pn à base de ZnO, n'a pas encore été réellement identifiée. C'est pourquoi une des étapes préliminaires et nécessaires à l'obtention d'un dopage de type p fiable et efficace, réside dans la compréhension du dopage résiduel de type n, ainsi que des phénomènes de compensation et de passivation qui sont mis en jeu au sein du matériau. La maîtrise de la nature des contacts (ohmique ou Schottky) sur différentes surfaces d'échantillons de ZnO nous a permis dans ce but de mettre en œuvre à la fois des mesures de transport (résistivité et effet Hall) et des mesures capacitives (capacité-tension C(V), Deep Level Transient Spectroscopy (DLTS) et Spectroscopie d'admittance).Dans un premier temps, nous avons donc cherché à comprendre de manière approfondie les propriétés électriques du ZnO massif. Nous avons ainsi étudié le rôle des défauts profonds et peu profonds sur la conductivité des échantillons, aux travers de différents échantillons massifs obtenus par synthèse hydrothermale ou par croissance chimique en phase vapeur. Nous avons également étudié l'impact de la température de recuits post-croissance, sur les propriétés de transport des échantillons. A la lumière des résultats obtenus sur le dopage résiduel de type n des échantillons de ZnO massifs, nous avons ensuite procédé à différents essais de dopage de type p du ZnO par implantation ionique d'azote et par diffusion en ampoule scellée d’arsenic. L'impureté azote a été choisie dans le cadre d'une substitution simple de l'oxygène qui devrait permettre de créer des niveaux accepteurs dans la bande interdite du ZnO. Nous avons également étudié l'impureté arsenic, qui selon un modèle théorique peut former un complexe qui permet d'obtenir un niveau accepteur plus proche de la bande de valence que le niveau. Outres les études réalisées sur les échantillons de ZnO massif et les essais de dopage de type p, nous avons également étudié les propriétés électriques d'échantillons de ZnO monocristallins sous forme de couches minces obtenues par croissance en phase vapeur d’organométalliques, dopées intentionnellement ou non. Les corrélations entres les mesures SIMS et C(V) nous ont permis notamment de mettre en évidence une diffusion et un rôle très importante de l'aluminium sur les propriétés électriques des couches minces de ZnO épitaxiées sur substrat saphir.Dans le cadre de cette thèse nous avons réussi à clarifier les mécanismes du dopage de type n, intentionnel ou non intentionnel, dans le ZnO monocristallin. Nous avons également identifié les impuretés et les paramètres de croissance importants permettant d'obtenir un dopage résiduel de type n le plus faible possible dans les couches épitaxiées. Cette maitrise du dopage résiduel de type n est une étape préliminaire indispensable aux études de dopage de type p car elle permet de minimiser la compensation des accepteurs introduits intentionnellement. Cette approche du dopage sur des couches minces de ZnO dont le dopage résiduel de type n est très faible apparait comme une voie très prometteuse pour surmonter les problèmes d'obtention du dopage de type p. / Zinc oxide (ZnO) is a II-VI semiconductor which appears as a very promising material for UV opto-electronic applications, in particular for the production of light emitting devices (LED). For these applications, ZnO presents strong advantages as a high exciton binding energy (60 meV ), a wide direct band gap (3.4 eV), the availability of large diameter bulk substrates for homoepitaxial growth of high quality thin films or nanostructures. However, the development of these applications is hampered by the difficulty to dope ZnO p-type. The impurity leading to an electrical conductivity associated with positive charge carriers (holes), and therefore the production of ZnO pn junctions have not yet been really identified.In this thesis we have studied the physical mechanisms that govern the electrical properties of ZnO single crystal and epilayers. The control of contacts (ohmic or Schottky) on different ZnO surfaces allowed us to carry out both transport measurements (resistivity and Hall effect) and capacitance measurements (C(V), Deep Level Transient Spectroscopy (DLTS) and admittance spectroscopy).At first, we have studied the role of deep and shallow defects on the n-type conductivity of bulk ZnO samples obtained by Hydrothermal synthesis (HT) or by Chemical Vapor Transport (CVT). We also investigated the impact of post-growth annealing at high temperature under oxygen atmospheres on the transport properties of samples. Thanks to the previous results on the residual n-type doping, we have reported on several attempts to obtain p-type ZnO. We have discussed the potential of different candidates for the achievement of p-type doping and present our tentative experiments to try and demonstrate the reality, the ability and the stability of p-type doping by nitrogen implantation and arsenic diffusion. The nitrogen impurity has been chosen for oxygen substitution, which should allow the creation of acceptor levels in the ZnO band gap. We also studied arsenic as a potential p-type dopant, according to a model whereby arsenic substitutes for oxygen and, if associated with two zinc vacancies, forms a complex with a shallower ionization energy than in the case of direct oxygen substitution.In addition to the studies on bulk ZnO samples and attempts on p-type doping, we have also studied the electrical properties of thin film ZnO samples obtained by Metal Organic Vapor Phase Epitaxy, either intentionally or unintentionally doped. Correlations between SIMS and C(V) measurements allowed us to highlight especially the importance of aluminum as a residual impurity in epitaxial layers grown on sapphire substrates.In this thesis we have clarified intentional or unintentional n-type doping mechanisms in ZnO single crystal samples. We have also identified impurities and growth parameters responsible for the residual n-type doping. This understanding is a crucial and preliminary step for understanding the doping mechanisms at stake in this material and is also necessary to achieve stable p-type conductivity, which is still the main challenge for the realization of optoelectronic devices based on ZnO.
|
Page generated in 0.0457 seconds