• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 241
  • 74
  • 36
  • 35
  • 12
  • 10
  • 8
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 485
  • 485
  • 179
  • 116
  • 91
  • 90
  • 80
  • 63
  • 54
  • 50
  • 49
  • 46
  • 43
  • 42
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Functional domain contributions to signaling specificity between the non-receptor tyrosine kinases c-src and c-yes

Summy, Justin Matthew. January 2001 (has links)
Thesis (Ph. D.)--West Virginia University, 2001. / Title from document title page. Document formatted into pages; contains vi, 195 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 182-190).
222

RET transcriptional regulation by HOXB5 in Hirschsprung's disease

朱江, Zhu, Jiang January 2012 (has links)
Hirschsprung’s disease (HSCR) is the major enteric nervous system anomaly affecting newborns with high incidence in Asians. HSCR is a congenital complex genetic disorder characterized by a lack of enteric ganglia along a variable length of the intestine. The receptor tyrosine kinase gene (RET) is the major HSCR gene and cis-elements in the promoter and intron of RET gene are crucial for RET expression. Abnormal RET expression leading to insufficient RET activity causes defective development of the enteric nervous system and is implicated in the pathogenesis of the Hirschsprung’s disease. The human homeobox B5, HOXB5, has an important role in the development of enteric neural crest cells, and perturbation of HOXB5 signaling causes reduced RET expression and HSCR phenotypes in mice. To investigate the roles of HOXB5 in the regulation of RET expression and in the aetiology of HSCR, I sought to(i) elucidate the underlying mechanisms that HOXB5 mediates RET expression, and (ii) to examine the interactions between HOXB5 and other transcription factors including SOX10 and NKX2-1 that have been implicated in RET expression and HSCR. In this study, I demonstrated that HOXB5 binds to the RET promoter and regulates RET expression. HOXB5 and NKX2-1 forma protein complex and mediate RET expression in a synergistic manner. In contrast, HOXB5 cooperates in an additive manner with SOX10in trans-activation from RET promoter. ChIP assay further revealed that HOXB5 and NKX2-1 interact with the same chromatin region proximate to the transcription start site of RET, suggesting that these two factors may interact with each other and regulate the transcription of RET. In silico analysis, EMSA and ChIP analysis showed that HOXB5 also binds to an enhancer element (MCS+9.7)in the intron 1 of RET gene, and HSCR-associated SNPs have been identified in this enhancer element. To further access the HOXB5 trans-activity onMCS+9.7, RET mini-gene was constructed by ligating the RET promoter to the 5’and MCS+9.7 to the 3’of a luciferase gene. Luciferase assay indicated that MCS+9.7 enhances the HOXB5 trans-activation from the RET promoter. In addition, previously identified HSCR-associated SNPs inintron 1 markedly reduce the HOXB5 trans-activation from the RET mini-gene. Moreover, the result of IP-LC-MS/MS indicated that HOXB5 could form protein-protein complexes with nuclear proteins involved in the transcription initiation of genes with TATA-less promoter. This evidence suggested that HOXB5 may cooperate with other activators or co-factors in the remodeling of chromatin conformation, local histone modification and recruitment of essential transcription factors for RNA Polymerase II based transcription from TATA-less promoter, such as RET. My data indicated that HOXB5 in coordination with other transcription factors mediates RET expression. Therefore, defects in cis-or trans-regulation of RET by HOXB5 could lead to a reduction of RET expression and contribute to the manifestation of the HSCR phenotype. / published_or_final_version / Surgery / Doctoral / Doctor of Philosophy
223

Src kinase inhibitors for the treatment of sarcomas: Cellular and molecular mechanisms of action

Shor, Audrey Cathryn 01 June 2007 (has links)
Sarcomas are rare mesenchymally-derived tumors with limited treatment options. Tyrosine kinases may serve as potential targets for sarcoma therapy because many are mutated or overexpressed in sarcomas and cell lines. One potential molecular target for sarcoma treatment is the Src tyrosine kinase. Three independently synthesized Src kinase inhibitors were evaluated in human sarcoma cell lines. Of the three, dasatinib, provided promising results as a potential sarcoma therapy. Until this study, dasatinib activity had not been characterized in sarcoma cells. Based on our previous findings of Src activation in human sarcomas, we evaluated the effects of dasatinib in twelve sarcoma cell lines. Dasatinib inhibited Src activity and downstream signaling at nanomolar concentrations. Inhibition of Src signaling was accompanied by blockade of cell migration and invasion. Moreover, apoptosis was induced in a subset of bone sarcomas at nanomolar concentrations of dasatinib. Inhibition of Src protein expression by siRNA also induced apoptosis, indicating that these bone sarcoma cell lines are dependent on Src activity for survival. These results demonstrate that dasatinib inhibits migration and invasion of diverse sarcoma cell types, and selectively blocks the survival of bone sarcoma cells. Therefore dasatinib may provide therapeutic benefit by preventing the growth and metastasis of sarcomas. Microarray analysis of the sarcoma cell lines lead to the identification of a molecular signature that successfully predicts response to dasatinib by induction of apoptosis. Components of this molecular signature are expressed in primary human sarcomas. Furthermore, expression of the molecular signature in sarcomas can be utilized to cluster tumors based on theoretical response to dasatinib. While the prediction of response in tumors is theoretical, there is encouraging evidence to support further endeavors into validating the potential of this molecular signature to predict response in patients.Together, these studies reveal that, in cell lines, both constitutive Src activation and the presence of a molecular signature that predicts response to dasatinib are important parameters to consider when selecting dasatinib as a treatment for. Furthermore, novel therapeutic approaches that inhibit Src signaling may selectively induce apoptosis in tumor cells and sensitize to chemotherapy those tumors that contain the relevant molecular signature.
224

Regulation of Growth Factor and Nutrient Sensing Pathways by Human Papillomavirus E6 Proteins

Spangle, Jennifer Marie 27 February 2013 (has links)
High-risk human papillomaviruses (HPVs) are associated with nearly all cases of cervical cancer and also contribute to other types of anogenital and oropharyngeal cancers. The high-risk HPV E6 oncoprotein contributes to malignant progression in part by the targeted degradation of the tumor suppressor p53. The activation of growth factor and nutrient sensing pathways including receptor protein tyrosine kinases (RPTKs) and mTORC1 may also support cellular transformation. Moreover, previous studies suggested that HPV16 E6 activates mTORC1. We are particularly interested in understanding the mechanisms by which HPV E6 activates mTORC1 and the function of mTORC1 activation in HPV infection. Here we show that high-risk HPV16 E6 activates mTORC1 signaling and increases cap dependent translation through an increase in S6K signaling and an increase in 4E-BP1 phosphorylation. Mechanistically we found that HPV16 E6 activates AKT under conditions of nutrient deprivation. The combined approach of phospho-tyrosine immunoprecipitations and Western blot identified HPV16 E6 mediated activation of a subset of receptor protein tyrosine kinases. HPV16 E6 activates RPTKs at least in part by increasing the internalization of phosphorylated and activated receptor species. The signaling adaptor protein Grb2 associates with HPV16 E6, and Grb2 knockdown abrogated HPV16 E6 mediated mTORC1 activation. We hypothesize that Grb2 may be important in relaying E6 mediated RPTK activation to downstream signaling cascades. In this dissertation we also evaluate mTORC1 signaling and cap dependent translation in cells expressing HPV16 E6 mutants and E6 proteins from other HPV types. Binding to p53 and the association with proteins that contain an LXXLL motif are important for HPV16 E6 mediated mTORC1 activation. An increase in mTORC1 activation and cap dependent translation is shared between high-and low-risk mucosal, but not cutaneous HPV E6 proteins. Association with proteins through their LXXLL binding motif is also important for low-risk mucosal HPV E6 activation of mTORC1 and cap dependent translation. Shared mucosal E6 activation of mTORC1 indicates that mTORC1 may be important for the viral lifecycle in mucosal epithelia. However, it does not rule out the possibility that together with other properties of high-risk HPV E6 proteins, mTORC1 activation may promote transformation.
225

In search of breast cancer cell secretions with therapeutic and diagnostic value.

Georgoulia, Nefeli Eleonora 04 December 2014 (has links)
The first end point of this study was to identify specific pro-apoptotic or anti-proliferative factors in the breast cancer cell secretome. To this end, we designed an in vitro screen that effectively cross-cultured 20 breast cancer cell lines in each other's conditioned media. We selected the strongest pro-apoptotic hits and performed further proteomic and biochemical characterization in order to analyze their composition. We determined that the pro-apoptotic activity resided in the soluble, exosome-free secreted fraction of triple negative breast cancer cell conditioned medium and used proteomic insights in order to narrow down the list of possible candidate molecules responsible for the apoptotic effect. The second endpoint of this study was to evaluate the particulate fraction found in breast cancer cell conditioned media for diagnostically significant molecules. We isolated cancer exosomes, employing a serial ultracentrifugation protocol, and were able to establish that the exosome cell surface receptors identically reflect the molecular identity of their cell lines of origin. However, downstream protein kinases within exosomes display patterns of depletion or enrichment in comparison to the corresponding cell lines. Overall, we found that the exosome protein composition in breast cancer is informative enough to guide the choice of specific inhibitor treatment in a clinical setting. / Engineering and Applied Sciences
226

Signalling pathways of M918T RET mutant in multiple endocrine neoplasia type 2B

陳展豪, Chan, Chin-ho. January 2005 (has links)
published_or_final_version / abstract / Paediatrics and Adolescent Medicine / Master / Master of Philosophy
227

Involvement of tyrosine phosphorylation during Leishmania donovani differentiation

Abourjeily, Nay. January 2001 (has links)
Dimorphic Leishmania donovani parasites exist as promastigotes in the sandfly vector and differentiate into amastigotes once injected into the skin of human hosts during a blood meal. The mechanisms and signals that are involved in triggering differentiation are not well understood in Leishmania. We have investigated whether tyrosine phosphorylation is a possible signalling component. Differential levels of tyrosine-phosphorylated proteins were observed in extracts from in vitro promastigote and amastigote cultures, with an overall reduction in the latter stage. Following this observation, the inhibition of tyrosine phosphorylation was examined in promastigotes using Tyrphostin AG1433, a broad-spectrum tyrosine phosphorylation inhibitor. AG1433 treated in vitro promastigote cultures differentiate into amastigote-like morphology, have reduced tyrosine phosphorylation level, and express the amastigote-specific marker A2 proteins. Our studies demonstrate that signal transduction mechanisms involving tyrosine phosphorylation/dephosphorylation events are involved in controlling L. donovani promastigote differentiation into amastigote forms.
228

The RET receptor tyrosine kinase: mechanism, signaling and therapeutics

Gujral, Taranjit Singh 07 June 2010 (has links)
The RET receptor tyrosine kinase has essential roles in cell survival, differentiation, and proliferation. Oncogenic activation of RET causes the cancer syndrome multiple endocrine neoplasia type 2 (MEN 2), and is a frequent event in sporadic thyroid carcinomas. Multiple endocrine neoplasia 2B (MEN 2B), a subtype of MEN 2, is caused primarily by a methionine to threonine substitution of residue 918 in the kinase domain of the RET receptor (2B-RET), however the molecular mechanisms that lead to the disease phenotype are unclear. In this study, we show that the M918T mutation causes a 10 fold increase in ATP binding affinity, and leads to a more stable receptor-ATP complex, relative to the wildtype receptor. We also show that 2B-RET can dimerize and become autophosphorylated in the absence of ligand. Our data suggest that multiple distinct but complementary molecular mechanisms underlie the MEN 2B phenotype and provide potential targets for effective therapeutics for this disease. In the second part of the study, we identified a novel β-catenin-RET kinase signaling pathway which is a critical contributor to the development and metastasis of human thyroid carcinoma. We show that RET binds to, and tyrosine phosphorylates, β-catenin and demonstrate that the interaction between RET and β-catenin can be direct and independent of cytoplasmic kinases, such as SRC. As a result of RET-mediated tyrosine phosphorylation, β-catenin escapes cytosolic downregulation by the APC/Axin/GSK3 complex and accumulates in the nucleus, where it can stimulate β-catenin-specific transcriptional programs in a RET-dependent fashion. We show that downregulation of β-catenin activity decreases RET-mediated cell proliferation, colony formation, and tumour growth in nude mice. Finally, we used a structure guided approach to identify and characterize a novel, non-ATP competitive, RET inhibitor; SW-01. We show that SW-01 provides significant RET inhibition in an in vitro kinase assay using purified RET. Moreover, RET phosphorylation is blocked, or dramatically reduced, in vivo in cells overexpressing active RET. We observe a significant decrease in cell proliferation and colony formation in RET-expressing cells in the presence of SW-01. Together, our data suggest that SW-01 has potential as a novel RET kinase inhibitor with clinical utility. / Thesis (Ph.D, Pathology & Molecular Medicine) -- Queen's University, 2008-09-15 16:20:59.976
229

Structural and functional studies of bacterial protein tyrosine kinases

Lee, Daniel Cho-En 27 September 2008 (has links)
While protein tyrosine kinases (PTKs) have been extensively characterized in eukaryotes, far less is known about their emerging counterparts in prokaryotes. Studies of close to 20 homologs of bacterial protein tyrosine (BY) kinases have inaugurated a blooming new field of research, all since just the end of the last decade. These kinases are key regulators in the polymerization and exportation of the virulence-determining polysaccharides which shield the bacterial from the non-specific defenses of the host. This research is aimed at furthering our understanding of the BY kinases through the use of X-ray crystallography and various in vitro and in vivo experiments. We reported the first crystal structure of a bacterial PTK, the C-terminal kinase domain of E. coli tyrosine kinase (Etk) at 2.5Å resolution. The fold of the Etk kinase domain differs markedly from that of eukaryotic PTKs. Based on the observed structure and supporting evidences, we proposed a unique activation mechanism for BY kinases in Gram-negative bacteria. The phosphorylation of tyrosine residue Y574 at the active site and the specific interaction of P-Y574 with a previously unidentified key arginine residue, R614, unblock the Etk active site and activate the kinase. Both in vitro kinase activity and in vivo antibiotics resistance studies utilizing structure-guided mutants further support the novel activation mechanism. In addition, the level of phosphorylation of their C-terminal Tyr cluster is known to regulate the translocation of extracellular polysaccharides. Our studies have significantly clarified our understanding of how the phosphorylation status on the C-terminal tyrosine cluster of BY kinases affects the oligomerization state of the protein, which is likely the machinery of polysaccharide export regulation. In summary, this research makes a substantial contribution to the rapidly progressing research of bacterial tyrosine kinases. / Thesis (Ph.D, Biochemistry) -- Queen's University, 2008-09-26 12:45:02.924
230

Identification of Genes Involved in the C. elegans VAB-1 Eph Receptor Tyrosine Kinase Signaling Pathway

MOHAMED, AHMED 29 July 2011 (has links)
The generation of a functional nervous system requires that neuronal cells and axons navigate precisely to their appropriate targets. The Eph Receptor Tyrosine Kinases (RTKs) and their ephrin ligands have emerged as one of the important guidance cues for neuronal and axon navigation. However, the molecular mechanisms of how Eph RTKs regulate these processes are still incomplete. The purpose of this work was to contribute to the understanding of how Eph receptors regulate axon guidance by identifying and characterizing components of the Caenorhabditis elegans Eph RTK (VAB-1) signaling pathway. To achieve this objective I utilized a hyper active form of the VAB-1 Eph RTK (MYR-VAB-1) that caused penetrant axon guidance defects in the PLM mechanosensory neurons, and screened for suppressors of the MYR-VAB-1 phenotype. Through a candidate gene approach, I identified the adaptor NCK-1 as a downstream effector of VAB-1. Molecular and genetic analysis revealed that the nck-1 gene encodes for two isoforms (NCK-1A and NCK-1B) that share similar expression patterns in parts of the nervous system, but also have independent expression patterns in other tissues. Genetic rescue experiments showed that both NCK-1 isoforms can function in axon guidance, but each isoform also has specific functions. In vitro binding assays showed that NCK-1 binds to VAB-1 in a kinase dependent manner. In addition to NCK-1, WSP-1/N-WASP was also identified as an effector of VAB-1 signaling. Phenotypic analysis showed that nck-1 and wsp-1 mutants had PLM axon over extension defects similar to vab-1 animals. Furthermore, VAB-1, NCK-1 and WSP-1 formed a complex in vitro. Intriguingly, protein binding assays showed that NCK-1 can also bind to the actin regulator UNC-34/Ena, but genetic experiments suggest that unc-34 is an inhibitor of nck-1 function. Through various genetic and biochemical experiments, I provide evidence that VAB-1 can disrupt the NCK-1/UNC-34 complex, and negatively regulate UNC-34. Taken together, my work provides a model of how VAB-1 RTK signaling can inhibit axon extension. I propose that activated VAB-1 can prevent axon extension by inhibiting growth cone filopodia formation. This is accomplished by inhibiting UNC-34/Ena activity, and simultaneously activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex. / Thesis (Ph.D, Biology) -- Queen's University, 2011-07-28 16:20:31.957

Page generated in 0.058 seconds