• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 8
  • 3
  • 1
  • 1
  • Tagged with
  • 74
  • 74
  • 51
  • 43
  • 42
  • 33
  • 29
  • 24
  • 20
  • 20
  • 18
  • 17
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Detekce objektů v laserových skenech pomocí konvolučních neuronových sítí / Object Detection in the Laser Scans Using Convolutional Neural Networks

Marko, Peter January 2021 (has links)
This thesis is aimed at detection of lines of horizontal road markings from a point cloud, which was obtained using mobile laser mapping. The system works interactively in cooperation with user, which marks the beginning of the traffic line. The program gradually detects the remaining parts of the traffic line and creates its vector representation. Initially, a point cloud is projected into a horizontal plane, crating a 2D image that is segmented by a U-Net convolutional neural network. Segmentation marks one traffic line. Segmentation is converted to a polyline, which can be used in a geo-information system. During testing, the U-Net achieved a segmentation accuracy of 98.8\%, a specificity of 99.5\% and a sensitivity of 72.9\%. The estimated polyline reached an average deviation of 1.8cm.
72

Improving Brain Tumor Segmentation using synthetic images from GANs

Nijhawan, Aashana January 2021 (has links)
Artificial intelligence (AI) has been seeing a great amount of hype around it for a few years but more so now in the field of diagnostic medical imaging. AI-based diagnoses have shown improvements in detecting the smallest abnormalities present in tumors and lesions. This can tremendously help public healthcare. There is a large amount of data present in the field of biomedical imaging with the hospitals but only a small amount is available for the use of research due to data and privacy protection. The task of manually segmenting tumors in this magnetic resonance imaging (MRI) can be quite expensive and time taking. This segmentation and classification would need high precision which is usually performed by medical experts that follow clinical medical standards. Due to this small amount of data when used with machine learning models, the trained models tend to overfit. With advancing deep learning techniques it is possible to generate images using Generative Adversarial Networks (GANs). GANs has garnered a heap of attention towards itself for its power to produce realistic-looking images, videos, and audios. This thesis aims to use the synthetic images generated by progressive growing GANs (PGGAN) along with real images to perform segmentation on brain tumor MRI. The idea is to investigate whether the addition of this synthetic data improves the segmentation significantly or not. To analyze the quality of the images produced by the PGGAN, Multi-scale Similarity Index Measure (MS-SSIM) and Sliced Wasserstein Distance (SWD) are recorded. To exam-ine the segmentation performance, Dice Similarity Coefficient (DSC) and accuracy scores are observed. To inspect if the improved performance by synthetic images is significant or not, a parametric paired t-test and non-parametric permutation test are used. It could be seen that the addition of synthetic images with real images is significant for most cases in comparison to using only real images. However, this addition of synthetic images makes the model uncertain. The models’ robustness is tested using training-free uncertainty estimation of neural networks.
73

THREE INITIATIVES ADDRESSING MRI PROBLEMS

Fan, Mingdong 29 May 2020 (has links)
No description available.
74

Deep Learning with Vision-based Technologies for Structural Damage Detection and Health Monitoring

Bai, Yongsheng 08 December 2022 (has links)
No description available.

Page generated in 0.0242 seconds