• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nutzung der orts- und zeitaufgelösten Detektion der Singulettsauerstoff Lumineszenz zur Evaluierung der Photodynamischen Inaktivierung von Mikroorganismen

Bornhütter, Tobias 18 April 2018 (has links)
Die Photodynamische Inaktivierung von Mikroorganismen (PDI) ist eine vielversprechende Methode zur Bekämpfung verschiedener Mikroorganismen. Grundlage der PDI ist die Generierung von reaktiven Sauerstoffspezies in toxischer Dosis, insbesondere von Singulettsauerstoff (1O2). Die Generierung von 1O2 erfolgt durch die Wechselwirkung eines Photosensibilisators mit Licht und molekularem Sauerstoff. Ein direkter Nachweis von 1O2 ist nur durch die Detektion seiner Phosphoreszenz bei 1269 nm (1O2 Lumineszenz) möglich. Die Kinetik der 1O2 Lumineszenz erlaubt Rückschlüsse auf die Mikroumgebung des Photosensibilisators. Die Phosphoreszenz-Quantenausbeute des 1O2 ist sehr gering und die spektrale Lage der 1O2 Lumineszenz bedingt geringe Detektionseffizienz und hohes Rauschen. Daher erfordert die zeitaufgelöste Detektion der 1O2 Lumineszenz hohen Aufwand an Technik und Fachwissen. Bisher gelang die zeitaufgelöste Detektion von 1O2 Lumineszenz an Mikroorganismen nur in Suspensionen. In dieser Arbeit werden Grundlagen für die Nutzung der orts- und zeitaufgelösten Detektion der 1O2 Lumineszenz auf Oberflächen als Werkzeug für die Evaluierung der PDI auf Oberflächen vorgestellt. Um diese Grundlagen zu schaffen, wurde ein Messplatz zur orts- und zeitaufgelösten Detektion von 1O2 Lumineszenz auf Oberflächen geplant, konstruiert, charakterisiert und getestet. In Untersuchungen an vier verschiedenen Mikroorganismen mit zwei Photosensibilisatoren gelingt erstmals der direkte, zeitaufgelöste Nachweis von 1O2 an Oberflächen kultivierter Mikroorganismen. Durch den Vergleich von Fluoreszenz-Scans und 1O2 Lumineszenz-Scans können Aussagen über das Diffusionsverhalten der Photosensibilisatoren und das 1O2 Lumineszenz Quenching der Mikro-organismen getroffen werden. Eine Analyse der 1O2 Lumineszenzkinetik zeigt, dass die Detektion der 1O2 Lumineszenz und die Bestimmung der 1O2 Lumineszenzkinetik im Zeitraum der PDI aller untersuchten Mikroorganismen möglich ist. / The Photodynamic Inactivation of Microorganisms (PDI) is a promising method to combat different microorganisms. The mechanism of PDI is based on the selective generation of reactive oxygen species, particularly of singlet oxygen (1O2), in a lethal dose. 1O2 is generated via the interaction of a photosensitizer with light and molecular oxygen. The only method for directly detecting 1O2 is the measurement of its characteristic phosphorescence at 1269 nm (1O2 luminescence). The kinetics of the 1O2 luminescence can be utilized to draw conclusions about the microenvironment of the photosensitizer. Due to the extremely low phosphorescence quantum yield of 1O2 and low detection efficiency because of its spectral position, the detection of 1O2 luminescence requires a considerable amount of specialised knowledge and technical efforts. Hitherto, the time-resolved detection of 1O2 luminescence at microorganisms has only been successful in suspensions. This thesis presents fundamentals for the use of laterally and time-resolved detection of 1O2 luminescence as a tool for evaluating PDI of microorganisms on surfaces. To provide these fundamentals, a setup for lateral and time-resolved 1O2 luminescence detection was planned, constructed and characterised. In studies regarding four different microorganisms and two photosensitizer, the direct time-resolved detection of 1O2 luminescence on the surface of cultured microorganisms was succeeded for the first time. The comparison of fluorescence and 1O2 luminescence scans allows gathering information about the diffusion properties of the photosensitizer as well as the quenching properties of the microorganisms. The analysis of the 1O2 luminescence kinetics exemplifies, that the determination of the 1O2 luminescence kinetics is possible over the period of the microorganisms’ PDI.
2

Light-induced energy and charge transfer processes in artificial photosynthetic systems

Menting, Raoul 11 January 2013 (has links)
Der Gegenstand der vorliegenden Arbeit ist die Untersuchung von photoinduzierten Energietransferprozessen (EET) und Elektronentransferprozessen (ET) in Modellsystemen, die als potentiell geeignet für eine Nutzung in der artifiziellen Photosynthese angesehen werden. Den beiden wesentlichen Zugängen zur Architektur artifizieller Photosynthese-Systeme entsprechend wurden vergleichend kovalente und sich selbst organisierende Systeme untersucht. In beiden Zugängen wurden ähnliche chemische Komponenten als optisch aktive Moleküle eingesetzt, insbesondere Phthalocyanine mit einem Silizium-Zentralatom (SiPc). Durch eine Kombination von stationären und zeitaufgelösten optisch-spektroskopischen Methoden konnten die lichtinduzierten ET- und EET-Prozesse identifiziert und quantifiziert werden. Im ersten Teil der Arbeit wurden mehrere kovalent gebundene Triaden und eine Pentade untersucht. In allen Systemen finden sehr effiziente ET und EET Prozesse statt. Es wurde gezeigt, dass das Lösungsmittel großen Einfluss auf die photophysikalischen Eigenschaften der Systeme ausübt. Die Lebensdauer des ladungsseparierten Zustandes variiert von 1,7 ns in Toluol bis 30 ps in DMF. Im zweiten Teil der Arbeit wurde erstmals gezeigt, dass sich in wässriger Lösung ein supramolekularer Komplex, bestehend aus einem Beta-Cyklodextrin (CD), einem konjugierten Subphthylocyanin (SubPc), einem Porphyrin (Por) und einem SiPc bilden kann. Letzteres wurde über unterschiedliche Ketten an zwei CDs kovalent gebunden. Die Selbstorganisation wird über hydrophobe Wechselwirkungen vermittelt und die Bildung der Komplexe ist sehr effizient. Nach selektiver Anregung von SubPc finden sequenzielle ET- und EET-Prozesse von SubPc zu SiPc statt. Das Por spielt die Rolle einer energetischen und elektronischen Brücke und ermöglicht die ET und EET-Prozesse von SubPc zu SiPc. Die Ladungsrekombination in den Grundzustand geschieht innerhalb von 1,7 ns. / The main objective of the present thesis was to conduct investigations of photo-induced electron transfer (ET) and excitation energy transfer (EET) processes in model compounds that are considered potentially appropriate for use in artificial photosynthesis. Two approaches have been used to construct the artificial photosynthetic systems, namely covalent and supramolecular approach. In both systems similar optically active molecules have been employed, particularly silicon-based phthalocyanines (SiPc). A comparative study between the covalently-linked and self-assembled systems had been conducted. For these purposes, thorough spectroscopic measurements in the UV/Vis range had been performed on these conjugates. A combination of steady-state and time-resolved experiments allowed an identification and quantification of the photo-induced ET and EET processes. In the first part of the work several covalently bound triads and a pentad bearing a central SiPc unit were studied. In all systems highly efficient ET and EET processes take place. It was found that the solvent exerts great influence on the photophysical properties of the systems. The lifetime of the charge-separated state varied from 1.7 ns (toluene) down to 30 ps (DMF). In the second part of the thesis, for the first time the formation of ternary supramolecular complexes consisting of a beta-cyclodextrin (CD), a conjugated subphthalocyanine (SubPc), a porphyrin (Por) and a series of SiPcs substituted axially with two CDs via different spacers was shown. These components are held in water by host-guest interactions and the formation of these host-guest complexes was found to be very efficient. Upon excitation of the SubPc-part of the complex sequential ET and EET processes from SubPc to SiPc take place. The Por dye acts as a transfer bridge enabling these processes. The probability of ET is controlled by the linker between CD and SiPc. Charge recombination to the ground state occurs within 1.7 ns.

Page generated in 0.0122 seconds