1 |
Estudo da região de sublimiar de transistores SOI avançados. / Subthreshold region study of advanced SOI transistors.Silva, Vanessa Cristina Pereira da 05 February 2018 (has links)
Em decorrência da necessidade de se obter circuitos integrados (CIs) cada vez mais velozes e consequentemente dando sequência à lei de Moore, a redução das dimensões dos dispositivos se torna necessária, aumentando assim a capacidade de integração de transistores dentro de um CI, porém, ao passo que ocorre a miniaturização, aparecem efeitos parasitários que afetam o comportamento dos transistores. Sendo assim, torna-se necessária a utilização de novos dispositivos e o uso de diferentes materiais, para dar continuidade à evolução tecnológica. Com o avanço da tecnologia, as indústrias seguiram em dois caminhos diferentes, a tecnologia planar (exemplo: UTBB) e a tridimensional (exemplo: FinFET). Neste trabalho são abordadas estas duas diferentes geometrias. Foram analisados dispositivos UTBOX e UTBB (planares) e os nanofios de porta ômega (?-Gate NW), que tem estrutura tridimensional. O uso de dispositivos com baixa-potência e baixa-tensão tornaram-se ainda mais importante nos dias de hoje, com aplicações em áreas médicas, como aparelhos auditivos e marca passos, em relógios inteligentes, microsensores e etc. Quanto menor for a potência consumida, menor será o calor gerado, resultando em uma redução de custos com sistemas de refrigeração. Os circuitos que operam na região de sublimiar são utilizados em aplicações onde o consumo de energia é mais importante do que a performance, porém, ao trabalhar nessa região os transistores apresentam um alto ganho para pouca variação de tensão. Nos transistores UTBOX e UTBB SOI nMOSFETs foram analisados os parâmetros partindo-se da tensão de limiar em direção à região do transistor no estado desligado, analisando a influência da espessura da região ativa do silício, do comprimento do canal e da implantação do plano de terra nos seguintes parâmetros: tensão de limiar, inclinação de sublimiar, abaixamento da barreira induzido pelo dreno (DIBL), a fuga no dreno induzida pela porta (GIDL) e razão das correntes no estado ligado e desligado (ION/IOFF). A redução do comprimento de canal afeta todos os parâmetros, devido ao efeito de canal curto, que além de reduzir a tensão de limiar, quando o dispositivo opera com baixo VDS (tensão entre dreno (VD) e fonte (VS)), reduz ainda mais quando aplicado alto VDS (em saturação), aumentando o DIBL. Esse efeito foi observado para os dispositivos nanofios com porta ômega, nos três valores de largura de canal analisados. Com o VDS alto também ocorre mais fuga de corrente pela segunda interface para comprimentos de canal curto, o que reduz a razão ION/IOFF. Quanto mais fina é a espessura do canal, melhor é o acoplamento entre as interfaces, resultando em uma melhor inclinação de sublimiar (SS) tornando os valores próximos ao limite teórico de 60mV/dec à temperatura ambiente. Nos resultados experimentais foi possível observar, para os dispositivos UTBOX e UTBB, uma redução de SS de aproximadamente 20 mV/dec, com a redução de tsi. A espessura da região ativa do silício também influencia na distribuição do campo elétrico, sendo diretamente proporcional, ou seja, quanto mais espessa a camada de silício, maior será o campo elétrico. A implantação do plano de terra (GP) tem como um de seus objetivos reduzir as cargas de depleção que são formadas abaixo do óxido enterrado e assim melhorar o controle das cargas no canal pela tensão aplicada no substrato. Essas cargas de depleção aumentam a espessura efetiva do óxido enterrado e também influenciam as cargas dentro do canal, resultando em um maior potencial na segunda interface (canal/óxido enterrado), facilitando a condução no canal, ou seja, reduzindo o valor de VT. Com a presença do GP, o potencial na segunda interface é mais próximo de zero, o que reduz a condução por essa região. Com isso será necessária uma maior tensão para inverter o canal. Porém, o controle das cargas pela tensão aplicada na porta é maior. Os valores extraídos de VT sem GP foram de aproximadamente 0,25V e com GP aproximadamente 0,45V. O estudo feito nos transistores de estrutura de nanofio e porta ômega NMOS e PMOS foi baseado em três parâmetros: tensão de limiar, inclinação de sublimiar e DIBL, com diferentes comprimentos e larguras de canal, sendo possível observar a presença do efeito de canal curto ao analisar os três parâmetros para L a partir de 100nm. Os transistores com Wfin=220nm apresentaram um menor VT em relação aos demais, para explorar esse fato, foram feitas simulações numéricas dos transistores do tipo N com Wfin=220nm e L=100nm. Com as simulações iniciais, os transistores com Wfin=220nm apresentaram um valor da tensão de limiar bem próximo dos demais Wfin. Para explorar o porquê de os dispositivos experimentais apresentarem um deslocamento no VT, foi analisada a condução pela segunda interface, onde, com as simulações com cargas fixas na segunda interface, a curva IDSXVGS simulada ficou próxima da experimental, explicando a redução de VT para Wfin=220nm. Com as simulações com cargas fixas na primeira e segunda interfaces, foi possível notar uma imunidade na inclinação de sublimiar ao adicionar essas cargas, que ocorre devido à pequena altura da região ativa de silício (hfin=10nm) que promove um forte acoplamento entre as interfaces. A largura de canal afetou significativamente os valores de DIBL para Ls menores que 100nm, pois, como o campo elétrico é proporcional à área, os transistores com L pequeno e W grande sofrem forte influência desse campo, resultando em um aumento de VT quando em saturação. / Due to the need to obtain integrated circuits (IC) faster and to follow Moore\'s law, it is necessary to reduce the dimensions of the devices increasing the capacity of integration of transistors inside an IC, however, with the miniaturization appears parasitic effects that affect the behavior of the transistors. Therefore, it is necessary to use new devices and the use of different materials to continue the technological evolution. With the advancement of technology, the industries have followed in two different ways, the planar technology (example: UTBB) and the three-dimensional technology (example: FinFET). In this work, these two different geometries are discussed. UTBOX and UTBB (planar) devices and the ?-Gate NW, which has a three-dimensional structure, were analyzed. The use of low-power low-voltage devices has become even more important nowadays, with applications in medical areas such as hearing aids and pacemakers, in smart watches, microsensors, and so on. The lower the power consumed, the lower the heat generated, resulting in a reduction of costs with cooling systems. The circuits that operate in the subthreshold region are used in applications where power consumption is more important than performance, but when working in this region the transistors have a high gain for little voltage variation. In the UTBOX and UTBB SOI nMOSFETs transistors the parameters starting from the threshold voltage towards the region of the transistor in the off state were studied, analyzing the influence of the silicon active region thickness, the channel length and the ground plane implantation in the following parameters: threshold voltage, subthreshold swing, drain-induced barrier lowering (DIBL), gate-induced drain leakage (GIDL) and current ratio on over off (ION/IOFF). The channel length reduction affects all parameters due to the short channel effect, which in addition to reducing the threshold voltage when the device operates with low VDS (VD) and source (VS)), reduces even further when applied high VDS (in saturation), increasing the DIBL. This effect was observed for the nanowire devices with omega gate, in the three channel width analyzed. With high VDS, there is also more current leakage through the back interface for short channel lengths, which reduces the ION/IOFF ratio. The thinner the channel thickness, the better the coupling between the interfaces, resulting in a better SS, making the values close to the theoretical limit of 60mV/dec at room temperature. In the experimental results, it was possible to observe for the UTBOX and UTBB devices a SS reduction of approximately 20mV/dec, with tsi reduction. The thickness of the active region of the silicon also influences the distribution of the electric field, being directly proportional, that is, the thicker the silicon layer, the greater the electric field. The implementation of the ground plane (GP) has as one of its objectives to reduce the depletion charges that are formed below the buried oxide and thus improve the control of the charges in the channel by the voltage applied at the substrate. These depletion charges increase the effective thickness of the buried oxide and also influence the charges at the channel, resulting in a higher potential at the second interface (buried channel/oxide), facilitating the conduction in the channel, i.e., reducing the value of VT. And with the presence of GP, the potential in the second interface is closer to zero, which reduces the conduction by this region, and then, this will require a higher voltage to invert the channel. However, the charge control by the voltage applied at the gate is higher. Values extracted of VT without GP were approximately 0.25V and with GP approximately 0.45V. The study on the omega-gate nanowire transistors of N and P type was based on three parameters: threshold voltage, subthreshold swing and DIBL, with different channel lengths and widths, being possible to observe the presence of the short channel effect for the three analyzed parameters and L=100 and 40nm. The transistors with Wfin=220nm had a higher VT in relation to the others, suggesting the presence of the narrow channel effect, to explore this fact, numerical simulations of N type transistors with Wfin=220nm and L=100nm were done. With the initial simulations, the transistors with Wfin=220nm did not show a narrow channel effect, where the threshold voltage value is very close to the others Wfin. Another alternative that was explored was the conduction by the back interface, where, with the simulations with fixed charges in the back interface, the simulated IDSXVGS curve was close to the experimental one, explaining the reduction of VT for Wfin=220nm. With the simulations with fixed charges in the front and back interfaces it was possible to notice an immunity in the subthreshold swing when adding these charges, which occurs due to the small height of the silicon active region (hfin=10nm) that promotes a strong coupling between the interfaces. The channel width significantly affected the DIBL values for Ls smaller than 100nm since, the electric field is proportional to the area, and the transistors with small L and large W have strong influence of this field, resulting in an increase of VT when in saturation.
|
2 |
Estudo da região de sublimiar de transistores SOI avançados. / Subthreshold region study of advanced SOI transistors.Vanessa Cristina Pereira da Silva 05 February 2018 (has links)
Em decorrência da necessidade de se obter circuitos integrados (CIs) cada vez mais velozes e consequentemente dando sequência à lei de Moore, a redução das dimensões dos dispositivos se torna necessária, aumentando assim a capacidade de integração de transistores dentro de um CI, porém, ao passo que ocorre a miniaturização, aparecem efeitos parasitários que afetam o comportamento dos transistores. Sendo assim, torna-se necessária a utilização de novos dispositivos e o uso de diferentes materiais, para dar continuidade à evolução tecnológica. Com o avanço da tecnologia, as indústrias seguiram em dois caminhos diferentes, a tecnologia planar (exemplo: UTBB) e a tridimensional (exemplo: FinFET). Neste trabalho são abordadas estas duas diferentes geometrias. Foram analisados dispositivos UTBOX e UTBB (planares) e os nanofios de porta ômega (?-Gate NW), que tem estrutura tridimensional. O uso de dispositivos com baixa-potência e baixa-tensão tornaram-se ainda mais importante nos dias de hoje, com aplicações em áreas médicas, como aparelhos auditivos e marca passos, em relógios inteligentes, microsensores e etc. Quanto menor for a potência consumida, menor será o calor gerado, resultando em uma redução de custos com sistemas de refrigeração. Os circuitos que operam na região de sublimiar são utilizados em aplicações onde o consumo de energia é mais importante do que a performance, porém, ao trabalhar nessa região os transistores apresentam um alto ganho para pouca variação de tensão. Nos transistores UTBOX e UTBB SOI nMOSFETs foram analisados os parâmetros partindo-se da tensão de limiar em direção à região do transistor no estado desligado, analisando a influência da espessura da região ativa do silício, do comprimento do canal e da implantação do plano de terra nos seguintes parâmetros: tensão de limiar, inclinação de sublimiar, abaixamento da barreira induzido pelo dreno (DIBL), a fuga no dreno induzida pela porta (GIDL) e razão das correntes no estado ligado e desligado (ION/IOFF). A redução do comprimento de canal afeta todos os parâmetros, devido ao efeito de canal curto, que além de reduzir a tensão de limiar, quando o dispositivo opera com baixo VDS (tensão entre dreno (VD) e fonte (VS)), reduz ainda mais quando aplicado alto VDS (em saturação), aumentando o DIBL. Esse efeito foi observado para os dispositivos nanofios com porta ômega, nos três valores de largura de canal analisados. Com o VDS alto também ocorre mais fuga de corrente pela segunda interface para comprimentos de canal curto, o que reduz a razão ION/IOFF. Quanto mais fina é a espessura do canal, melhor é o acoplamento entre as interfaces, resultando em uma melhor inclinação de sublimiar (SS) tornando os valores próximos ao limite teórico de 60mV/dec à temperatura ambiente. Nos resultados experimentais foi possível observar, para os dispositivos UTBOX e UTBB, uma redução de SS de aproximadamente 20 mV/dec, com a redução de tsi. A espessura da região ativa do silício também influencia na distribuição do campo elétrico, sendo diretamente proporcional, ou seja, quanto mais espessa a camada de silício, maior será o campo elétrico. A implantação do plano de terra (GP) tem como um de seus objetivos reduzir as cargas de depleção que são formadas abaixo do óxido enterrado e assim melhorar o controle das cargas no canal pela tensão aplicada no substrato. Essas cargas de depleção aumentam a espessura efetiva do óxido enterrado e também influenciam as cargas dentro do canal, resultando em um maior potencial na segunda interface (canal/óxido enterrado), facilitando a condução no canal, ou seja, reduzindo o valor de VT. Com a presença do GP, o potencial na segunda interface é mais próximo de zero, o que reduz a condução por essa região. Com isso será necessária uma maior tensão para inverter o canal. Porém, o controle das cargas pela tensão aplicada na porta é maior. Os valores extraídos de VT sem GP foram de aproximadamente 0,25V e com GP aproximadamente 0,45V. O estudo feito nos transistores de estrutura de nanofio e porta ômega NMOS e PMOS foi baseado em três parâmetros: tensão de limiar, inclinação de sublimiar e DIBL, com diferentes comprimentos e larguras de canal, sendo possível observar a presença do efeito de canal curto ao analisar os três parâmetros para L a partir de 100nm. Os transistores com Wfin=220nm apresentaram um menor VT em relação aos demais, para explorar esse fato, foram feitas simulações numéricas dos transistores do tipo N com Wfin=220nm e L=100nm. Com as simulações iniciais, os transistores com Wfin=220nm apresentaram um valor da tensão de limiar bem próximo dos demais Wfin. Para explorar o porquê de os dispositivos experimentais apresentarem um deslocamento no VT, foi analisada a condução pela segunda interface, onde, com as simulações com cargas fixas na segunda interface, a curva IDSXVGS simulada ficou próxima da experimental, explicando a redução de VT para Wfin=220nm. Com as simulações com cargas fixas na primeira e segunda interfaces, foi possível notar uma imunidade na inclinação de sublimiar ao adicionar essas cargas, que ocorre devido à pequena altura da região ativa de silício (hfin=10nm) que promove um forte acoplamento entre as interfaces. A largura de canal afetou significativamente os valores de DIBL para Ls menores que 100nm, pois, como o campo elétrico é proporcional à área, os transistores com L pequeno e W grande sofrem forte influência desse campo, resultando em um aumento de VT quando em saturação. / Due to the need to obtain integrated circuits (IC) faster and to follow Moore\'s law, it is necessary to reduce the dimensions of the devices increasing the capacity of integration of transistors inside an IC, however, with the miniaturization appears parasitic effects that affect the behavior of the transistors. Therefore, it is necessary to use new devices and the use of different materials to continue the technological evolution. With the advancement of technology, the industries have followed in two different ways, the planar technology (example: UTBB) and the three-dimensional technology (example: FinFET). In this work, these two different geometries are discussed. UTBOX and UTBB (planar) devices and the ?-Gate NW, which has a three-dimensional structure, were analyzed. The use of low-power low-voltage devices has become even more important nowadays, with applications in medical areas such as hearing aids and pacemakers, in smart watches, microsensors, and so on. The lower the power consumed, the lower the heat generated, resulting in a reduction of costs with cooling systems. The circuits that operate in the subthreshold region are used in applications where power consumption is more important than performance, but when working in this region the transistors have a high gain for little voltage variation. In the UTBOX and UTBB SOI nMOSFETs transistors the parameters starting from the threshold voltage towards the region of the transistor in the off state were studied, analyzing the influence of the silicon active region thickness, the channel length and the ground plane implantation in the following parameters: threshold voltage, subthreshold swing, drain-induced barrier lowering (DIBL), gate-induced drain leakage (GIDL) and current ratio on over off (ION/IOFF). The channel length reduction affects all parameters due to the short channel effect, which in addition to reducing the threshold voltage when the device operates with low VDS (VD) and source (VS)), reduces even further when applied high VDS (in saturation), increasing the DIBL. This effect was observed for the nanowire devices with omega gate, in the three channel width analyzed. With high VDS, there is also more current leakage through the back interface for short channel lengths, which reduces the ION/IOFF ratio. The thinner the channel thickness, the better the coupling between the interfaces, resulting in a better SS, making the values close to the theoretical limit of 60mV/dec at room temperature. In the experimental results, it was possible to observe for the UTBOX and UTBB devices a SS reduction of approximately 20mV/dec, with tsi reduction. The thickness of the active region of the silicon also influences the distribution of the electric field, being directly proportional, that is, the thicker the silicon layer, the greater the electric field. The implementation of the ground plane (GP) has as one of its objectives to reduce the depletion charges that are formed below the buried oxide and thus improve the control of the charges in the channel by the voltage applied at the substrate. These depletion charges increase the effective thickness of the buried oxide and also influence the charges at the channel, resulting in a higher potential at the second interface (buried channel/oxide), facilitating the conduction in the channel, i.e., reducing the value of VT. And with the presence of GP, the potential in the second interface is closer to zero, which reduces the conduction by this region, and then, this will require a higher voltage to invert the channel. However, the charge control by the voltage applied at the gate is higher. Values extracted of VT without GP were approximately 0.25V and with GP approximately 0.45V. The study on the omega-gate nanowire transistors of N and P type was based on three parameters: threshold voltage, subthreshold swing and DIBL, with different channel lengths and widths, being possible to observe the presence of the short channel effect for the three analyzed parameters and L=100 and 40nm. The transistors with Wfin=220nm had a higher VT in relation to the others, suggesting the presence of the narrow channel effect, to explore this fact, numerical simulations of N type transistors with Wfin=220nm and L=100nm were done. With the initial simulations, the transistors with Wfin=220nm did not show a narrow channel effect, where the threshold voltage value is very close to the others Wfin. Another alternative that was explored was the conduction by the back interface, where, with the simulations with fixed charges in the back interface, the simulated IDSXVGS curve was close to the experimental one, explaining the reduction of VT for Wfin=220nm. With the simulations with fixed charges in the front and back interfaces it was possible to notice an immunity in the subthreshold swing when adding these charges, which occurs due to the small height of the silicon active region (hfin=10nm) that promotes a strong coupling between the interfaces. The channel width significantly affected the DIBL values for Ls smaller than 100nm since, the electric field is proportional to the area, and the transistors with small L and large W have strong influence of this field, resulting in an increase of VT when in saturation.
|
3 |
Etude des mécanismes affectant la fiabilité des oxydes enterrés ultra-minces et des dispositifs avancés en technologie FDSOI / Study of the mechanisms affecting the reliability of ultra-thin buried oxides and devices in FDSOI technologyBesnard, Guillaume 03 June 2016 (has links)
Avec une introduction pour le nœud technologique 28nm, l’architecture FDSOI planaire devient une alternative intéressante pour adresser les marchés microélectroniques nécessitant une faible voire très faible consommation d’énergie. Elle se différencie principalement grâce à sa technologie de polarisation arrière, dite Back-Bias, afin de moduler la tension de seuil des transistors avec une grande efficacité. Cette modulation permet alors d’adapter le fonctionnement du circuit pour augmenter les performances ou diminuer la consommation. En plus de l’utilisation de film de SOI minces propre à l’architecture, les substrats FDSOI nécessite l’intégration d’oxydes enterrés minces afin de rendre possible la modulation de tension de seuil. Dans ce manuscrit, nous présentons une étude de la fiabilité des oxydes enterrés minces à travers un ensemble de caractérisations électriques et physico-chimiques dans le but d’évaluer leur durée de vie et l’impact de leur dégradation sur les dispositifs. Dans un premier temps, nous donnerons les éléments nécessaires à la compréhension de la dégradation des oxydes dans un contexte d’applications microélectroniques. Les phénomènes évoqués seront alors appliqués aux oxydes enterrés à travers différentes méthodes de caractérisation. Dans un second temps, nous ferons un état de l’art de la fabrication des substrats FDSOI et comparons ainsi la qualité des UTBOX à un oxyde thermique SiO2 de référence par l’intermédiaire de la mesure de charge au claquage (QBD). Plusieurs optimisations seront alors proposées et évaluées pour améliorer cette fiabilité. Ensuite, à partir d’un suivi de la dégradation du volume de l’oxyde et des interfaces, nous chercherons à expliquer le vieillissement de ces oxydes en le rattachant au modèle de percolation. Enfin, nous évaluerons la fiabilité de transistors FDSOI et mesurerons l’impact de la dégradation de l’interface arrière sur leur fonctionnement. Lors de cette étude, nous ferons une comparaison de la fiabilité entre des dispositifs non-contraints et des dispositifs intégrant un canal de silicium contraint en tension réalisés sur des substrats sSOI. Les substrats sSOI sont prévus pour être utilisés sur un nœud technologique 10nm afin d’augmenter la performance des transistors NMOS. / With his introduction on a 28nm technology node, planar FDSOI becomes an excellent architecture to address Low-Power and Ultra-Low Power applications. One of the most interesting technologies is back-bias which enables strong multi-Vth management in order to increase performance or decrease power consumption. Thus, in addition to thin silicon film, FDSOI wafers integrate thin buried oxide to enable this Back-Bias technology. This manuscript presents the study of the reliability of UTBOX thorough electrical and physical characterizations in order to evaluate their lifetime and the impact of their degradation on the devices. First, we will talk about basics of oxide reliability applied to ultra-thin buried oxides and electrical characterization tools used to monitor their wear-out. Second, we describe state-of-the-art processes for FDSOI substrate fabrication and compare the reliability of UTBOX to thermal SiO2, especially by charge-to-breakdown measurements (QBD). By this way, several optimizations have been proposed to improve this reliability. Then, we have monitored bulk oxide and interface degradation of UTBOX to understand, explain and model the wear-out mechanism evolved in the percolation model of buried oxides. Finally, we present the degradation of the back interface and the impact on the characteristics of the transistor. In this context, we also compare standard unstrained FDSOI devices with tensely-strained FDSOI devices from sSOI substrates. This substrate is planned to take part of the 10nm FDSOI technology node in order to increase the performance of NMOS transistors.
|
4 |
Etude du bruit électrique basse fréquence dans des technologies CMOS avancées / Study of electrical low frequency noise in advanced CMOS technologiesNafaa, Beya 18 December 2018 (has links)
Les travaux réalisés pendant cette thèse se focalisent sur l'étude de transistors double grille UTBOX complètement délpétés fabriqués pour le nœud technologique 16 nm. Les performances de ces composants en courant continu et en fonction de la température ont été évaluées. Les pièges localisés dans le film de silicium ont été identifiés à l’aide de la spectroscopie de bruit basse fréquence, donnant ainsi la possibilité d'évaluer les étapes de fabrications afin de les optimiser. Un pic inhabituel de transconductance a été observé dans les caractéristiques de transfert obtenues à faibles températures (77 K et 10 K). Ce phénomène est plus probablement lié à un effet tunnel à travers des dopants diffusés à partir des extensions de source et drain dans le canal. Le mécanisme de transport quantique relié à la dégénérescence de niveaux d'énergie dans la bande de conduction a été mis en évidence à température cryogéniques et à très faibles polarisations. Une nouvelle approche théorique valide en inversion modérée a été développée pour les modèles de fluctuations de mobilité et de fluctuations de mobilité corrélés aux fluctuations du nombre de porteurs. Les résultats indiquent que le changement du mécanisme de transport des porteurs est accompagné par un changement du mécanisme du bruit en 1/f . / The work done during this thesis focuses on the study of fully depleted double gate UTBOX transistors manufactured for the 16 nm technology node. The performances of these components in DC and as a function of temperature were evaluated. The traps located in the silicon film have been identified using low frequency noise spectroscopy, giving the possibility of evaluating the manufacturing steps in order to optimize them. An unusual peak of transconductance was observed in the transfer characteristics obtained at low temperatures (77 K and 10 K). This phenomenon is most likely related to a tunneling effect through dopants scattered from the source and drain extensions in the channel. The quantum transport mechanism related to the degeneracy of energy levels in the conduction band has been demonstrated at cryogenic temperatures and at very low polarizations. A new theoretical approach valid in moderate inversion has been developed for models of mobility fluctuations and mobility fluctuations correlated with the number of carriers fluctuations. The results indicate that the change in carrier transport mechanism is accompanied by a change in the 1 / f noise mechanism.
|
5 |
Estudo de transistores UTBOX SOI não auto-alinhados como célula de memória. / Study of the extensionless UTBOX SOI transistors as memory cell.Nicoletti, Talitha 19 June 2013 (has links)
O objetivo principal deste trabalho é o estudo de transistores UTBOX SOI não auto-alinhados operando como célula de memória de apenas um transistor aproveitando-se do efeito de corpo flutuante (1T-FBRAM single Transistor Floating Body Random Access Memory). A caracterização elétrica dos dispositivos se deu a partir de medidas experimentais estáticas e dinâmicas e ainda, simulações numéricas bidimensionais foram implementadas para confirmar os resultados obtidos. Diferentes métodos de escrita e leitura do dado 1 que também são chamados de métodos de programação do dado 1 são encontrados na literatura, mas com intuito de se melhorar os parâmetros dinâmicos das memórias como o tempo de retenção e a margem de sensibilidade e ainda, permitir um maior escalamento dos dispositivos totalmente depletados, o método de programação utilizado neste trabalho será o BJT (Bipolar Junction Transistor). Uma das maiores preocupações para a aplicação de células 1T-DRAMs nas gerações tecnológicas futuras é o tempo de retenção que diminui juntamente com a redução do comprimento de canal do transistor. Com o intuito de solucionar este problema ou ao menos retardá-lo, é apresentando pela primeira vez um estudo sobre a dependência do tempo de retenção e da margem de sensibilidade em função do comprimento de canal, onde se observou que esses parâmetros dinâmicos podem ser otimizados através da polarização do substrato e mantidos constantes para comprimentos de canal maiores que 50 no caso dos dispositivos não auto-alinhados e 80 nos dispositivos de referência. Entretanto, observou-se também que existe um comprimento de canal mínimo que é dependente do tipo de junção (30 no caso dos dispositivos não auto-alinhados e 50 nos dispositivos de referência) de modo que para comprimentos de canal abaixo desses valores críticos não há mais espaço para otimização dos parâmetros, degradando assim o desempenho da célula de memória. O mecanismo de degradação dos parâmetros dinâmicos de memória foi identificado e atribuído à amplificação da corrente de GIDL (Gate Induced Drain Leakage) pelo transistor bipolar parasitário de base estreita durante a leitura e o tempo de repouso do dado 0. A presença desse efeito foi confirmada através de simulações numéricas bidimensionais dos transistores quando uma alta taxa de geração de portadores surgiu bem próxima das junções de fonte e dreno somente quando o modelo de tunelamento banda-a-banda (bbt.kane) foi considerado. Comparando o comportamento dos dispositivos não auto-alinhados com os dispositivos de referência tanto nos principais parâmetros elétricos (tensão de limiar, inclinação de sublimiar, ganho intrínseco de tensão) como em aplicações de memória (tempo de retenção, margem de sensibilidade, janela de leitura), constatou-se que a estrutura não auto-alinhada apresenta melhor desempenho, uma vez que alcança maior velocidade de chaveamento devido a menor inclinação de sublimiar; menor influência das linhas de campo elétrico nas cargas do canal, menor variação da tensão de limiar, até mesmo com a variação da temperatura. Além disso, constatou-se que os dispositivos não auto-alinhados são mais escaláveis do que os dispositivos de referência, pois são menos susceptíveis à corrente de GIDL, apresentando menor campo elétrico e taxa de geração próximos das junções de fonte e dreno que os dispositivos de referência, alcançando então um tempo de retenção de aproximadamente 6 e margem de sensibilidade de aproximadamente 71 A/m. Segundo as especificações da International Technology Roadmap for Semicondutor de 2011, o valor do tempo de retenção para as memórias DRAM convencionais existentes no mercado de semicondutores é de aproximadamente 64. Com o intuito de aumentar o tempo de retenção das 1T-DRAMs a valores próximos à 64 recomenda-se então o uso da tecnologia não auto-alinhada e também a substituição do silício por materiais com maior banda proibida (band-gap), como exemplo o arseneto de gálio e o silício-carbono, dificultando assim o tunelamento dos elétrons e, consequentemente, diminuindo o GIDL. / The main topic of this work is the study of extensionless UTBOX SOI transistors, also called underlapped devices, applied as a single transistor floating body RAM (1T-FBRAM single transistor floating body access memory). The electrical characterization of the devices was performed through static and dynamic experimental data and two dimensional simulations were implemented to confirm the obtained results. In the literature, different methods to write and read the data 1 can be found but in order to improve the dynamic parameters of the memories, as retention time and sense margin and still allows the scaling of fully depleted devices, the BJT (Bipolar Junction Transistor) method is used in this work. One of the biggest issues to meet the specifications for future generations of 1T-DRAM cells is the retention time that scales together with the channel length. In order to overcome this issue or at least slow it down, in this work, we present for the first time, a study about the retention time and sense margin dependence of the channel length where it was possible to observe that these dynamic parameters can be optimized through the back gate bias and kept constant for channel lengths higher than 50 nm for extensionless devices and 80 nm for standard ones. However, it was also observed that there is a minimal channel length which depends of the source/drain junctions, i.e. 30 nm for extensionless and 50 nm for standard devices in the sense that for shorter channel lengths than these ones, there is no room for optimization degrading the performance of the memory cell. The mechanism behind the dynamic parameters degradation was identified and attributed to the GIDL current amplification by the lateral bipolar transistor with narrow base. Simulations confirmed this effect where higher generation rates near the junctions were presented only when the band-toband- tunneling adjustment was considered (bbt.kane model). Comparing the performance of standard and extensionless devices in both digital and analog electrical parameters and also in memory applications, it was found that extensionless devices present better performance since they reach faster switching which means lower subthreshold slope; less influence of the electrical field in the channel charges; less variation of the threshold voltage even increasing the temperature. Furthermore, it was seen that the gate length can be further scaled using underlap junctions since these devices are less susceptible to the GIDL current, presenting less electric field and generation rate near the source/drain junctions and reach a retention time of around 4 ms and sense margin of 71A/m. According to the International Technology Roadmap for Semiconductor of 2011, the retention time for the existing DRAM is around 64 ms. In order to increase the retention time of the 1T-DRAMs to values close to 64 ms it is recommended the use of extensionless devices and also the substitution of silicon by materials with higher band gap, i.e., gallium arsenide and siliconcarbon, which makes difficult the electron tunneling therefore, decreasing the GIDL.
|
6 |
Estudo de transistores UTBOX SOI não auto-alinhados como célula de memória. / Study of the extensionless UTBOX SOI transistors as memory cell.Talitha Nicoletti 19 June 2013 (has links)
O objetivo principal deste trabalho é o estudo de transistores UTBOX SOI não auto-alinhados operando como célula de memória de apenas um transistor aproveitando-se do efeito de corpo flutuante (1T-FBRAM single Transistor Floating Body Random Access Memory). A caracterização elétrica dos dispositivos se deu a partir de medidas experimentais estáticas e dinâmicas e ainda, simulações numéricas bidimensionais foram implementadas para confirmar os resultados obtidos. Diferentes métodos de escrita e leitura do dado 1 que também são chamados de métodos de programação do dado 1 são encontrados na literatura, mas com intuito de se melhorar os parâmetros dinâmicos das memórias como o tempo de retenção e a margem de sensibilidade e ainda, permitir um maior escalamento dos dispositivos totalmente depletados, o método de programação utilizado neste trabalho será o BJT (Bipolar Junction Transistor). Uma das maiores preocupações para a aplicação de células 1T-DRAMs nas gerações tecnológicas futuras é o tempo de retenção que diminui juntamente com a redução do comprimento de canal do transistor. Com o intuito de solucionar este problema ou ao menos retardá-lo, é apresentando pela primeira vez um estudo sobre a dependência do tempo de retenção e da margem de sensibilidade em função do comprimento de canal, onde se observou que esses parâmetros dinâmicos podem ser otimizados através da polarização do substrato e mantidos constantes para comprimentos de canal maiores que 50 no caso dos dispositivos não auto-alinhados e 80 nos dispositivos de referência. Entretanto, observou-se também que existe um comprimento de canal mínimo que é dependente do tipo de junção (30 no caso dos dispositivos não auto-alinhados e 50 nos dispositivos de referência) de modo que para comprimentos de canal abaixo desses valores críticos não há mais espaço para otimização dos parâmetros, degradando assim o desempenho da célula de memória. O mecanismo de degradação dos parâmetros dinâmicos de memória foi identificado e atribuído à amplificação da corrente de GIDL (Gate Induced Drain Leakage) pelo transistor bipolar parasitário de base estreita durante a leitura e o tempo de repouso do dado 0. A presença desse efeito foi confirmada através de simulações numéricas bidimensionais dos transistores quando uma alta taxa de geração de portadores surgiu bem próxima das junções de fonte e dreno somente quando o modelo de tunelamento banda-a-banda (bbt.kane) foi considerado. Comparando o comportamento dos dispositivos não auto-alinhados com os dispositivos de referência tanto nos principais parâmetros elétricos (tensão de limiar, inclinação de sublimiar, ganho intrínseco de tensão) como em aplicações de memória (tempo de retenção, margem de sensibilidade, janela de leitura), constatou-se que a estrutura não auto-alinhada apresenta melhor desempenho, uma vez que alcança maior velocidade de chaveamento devido a menor inclinação de sublimiar; menor influência das linhas de campo elétrico nas cargas do canal, menor variação da tensão de limiar, até mesmo com a variação da temperatura. Além disso, constatou-se que os dispositivos não auto-alinhados são mais escaláveis do que os dispositivos de referência, pois são menos susceptíveis à corrente de GIDL, apresentando menor campo elétrico e taxa de geração próximos das junções de fonte e dreno que os dispositivos de referência, alcançando então um tempo de retenção de aproximadamente 6 e margem de sensibilidade de aproximadamente 71 A/m. Segundo as especificações da International Technology Roadmap for Semicondutor de 2011, o valor do tempo de retenção para as memórias DRAM convencionais existentes no mercado de semicondutores é de aproximadamente 64. Com o intuito de aumentar o tempo de retenção das 1T-DRAMs a valores próximos à 64 recomenda-se então o uso da tecnologia não auto-alinhada e também a substituição do silício por materiais com maior banda proibida (band-gap), como exemplo o arseneto de gálio e o silício-carbono, dificultando assim o tunelamento dos elétrons e, consequentemente, diminuindo o GIDL. / The main topic of this work is the study of extensionless UTBOX SOI transistors, also called underlapped devices, applied as a single transistor floating body RAM (1T-FBRAM single transistor floating body access memory). The electrical characterization of the devices was performed through static and dynamic experimental data and two dimensional simulations were implemented to confirm the obtained results. In the literature, different methods to write and read the data 1 can be found but in order to improve the dynamic parameters of the memories, as retention time and sense margin and still allows the scaling of fully depleted devices, the BJT (Bipolar Junction Transistor) method is used in this work. One of the biggest issues to meet the specifications for future generations of 1T-DRAM cells is the retention time that scales together with the channel length. In order to overcome this issue or at least slow it down, in this work, we present for the first time, a study about the retention time and sense margin dependence of the channel length where it was possible to observe that these dynamic parameters can be optimized through the back gate bias and kept constant for channel lengths higher than 50 nm for extensionless devices and 80 nm for standard ones. However, it was also observed that there is a minimal channel length which depends of the source/drain junctions, i.e. 30 nm for extensionless and 50 nm for standard devices in the sense that for shorter channel lengths than these ones, there is no room for optimization degrading the performance of the memory cell. The mechanism behind the dynamic parameters degradation was identified and attributed to the GIDL current amplification by the lateral bipolar transistor with narrow base. Simulations confirmed this effect where higher generation rates near the junctions were presented only when the band-toband- tunneling adjustment was considered (bbt.kane model). Comparing the performance of standard and extensionless devices in both digital and analog electrical parameters and also in memory applications, it was found that extensionless devices present better performance since they reach faster switching which means lower subthreshold slope; less influence of the electrical field in the channel charges; less variation of the threshold voltage even increasing the temperature. Furthermore, it was seen that the gate length can be further scaled using underlap junctions since these devices are less susceptible to the GIDL current, presenting less electric field and generation rate near the source/drain junctions and reach a retention time of around 4 ms and sense margin of 71A/m. According to the International Technology Roadmap for Semiconductor of 2011, the retention time for the existing DRAM is around 64 ms. In order to increase the retention time of the 1T-DRAMs to values close to 64 ms it is recommended the use of extensionless devices and also the substitution of silicon by materials with higher band gap, i.e., gallium arsenide and siliconcarbon, which makes difficult the electron tunneling therefore, decreasing the GIDL.
|
Page generated in 0.0283 seconds