Spelling suggestions: "subject:"ultrawide bandwidth"" "subject:"uktrawide bandwidth""
1 |
Design and characterization of an 8gsps flash analog-to-digital converter for radio astronomy and cosmology applications / Conception et caractérisation d'un CAN Flash de fréquence d'échantillonnage de 8 Géchantillons/seconde pour des applications en radioastronomieRossoni Mattos, Diego 04 December 2012 (has links)
Un Convertisseur Analogique-Numérique (CAN) pour les applications spatiales en astrophysique et cosmologie a été développé au cours de cette thèse. Cette catégorie de circuits demande des bandes passantes très larges, de très hautes fréquences d'échantillonnage et une faible résolution. L’architecture flash a été retenue pour sa rapidité et sa bande passante. La fréquence d’échantillonnage est de 8GHz. La technologie utilisée est la CMOS 65 nm de chez STMicroeletronics. La conception a été faite en deux phases. Une première qui a amené à un prototype d'un échantillonneur-bloqueur et une deuxième qui a amené au CAN. Les deux prototypes ont été caractérisés et à partir de ces résultats des perspectives d'amélioration pour les nouvelles implémentations ont été retrouvées.Pour atteindre l'objectif final du CAN multi-bits (6-bit sont visés) il a été décidé de dessiner une première version du CAN avec la moitié de la résolution initialement prévue (on passe de 6-bit à 3-bit). L'objectif est de nous permettre d’analyser le comportement des blocs fonctionnels intégrés et ensuite passer à une deuxième voire troisième version pour remplir le cahier des charges initial. / An Analog-to-Digital Converter (ADC) has been developed for astrophysical and cosmological applications. This class of circuits demands, especially in the millimeter wavelength domain, ultra wide bandwidths, ultra high sampling frequencies and a low resolution. The “flash” architecture has been chosen for its speed and bandwidth. This ADC samples at 8Gsps and it has been fabricated in 65nm CMOS technology from STMicroelectornics.The design has been done in two steps. The first was the prototype of a track-and-hold circuit. The second was the ADC. Both circuits have been characterized and from these results some perspectives for further improvements have been proposed.In order to achieve the final goal of the multi-bit ADC (6-bit resolution) we have decided to design a first prototype with half the final resolution, namely a 3-bit resolution ADC. Our idea was, with this first prototype, to conduct a first analysis of the behavior of the integrated functional blocks and, consequently, find the correct improvements required for the ADC final version.
|
2 |
Balanced antennas for mobile handset applications. Simulation and Measurement of Balanced Antennas for Mobile Handsets, investigating Specific Absorption Rate when operated near the human body, and a Coplanar Waveguide alternative to the Balanced Feed.Alhaddad, A.G. January 2012 (has links)
The main objectives of this research are to investigate and design low profile antennas
for mobile handsets applications using the balanced concept. These antennas are
considered to cover a wide range of wireless standards such as: DCS (1710¿1880 MHz),
PCS (1850¿1990 MHz), UMTS (1920¿2170 MHz), WLAN (2400¿2500 MHz and 5000
¿ 5800 MHz) and UWB frequency bands. Various antennas are implemented based on
built-in planar dipole with a folded arm structure.
The performance of several designed antennas in terms of input return loss, radiation
patterns, radiation efficiency and power gain are presented and several remarkable
results are obtained. The measurements confirm the theoretical design concept and show
reasonable agreement with computations. The stability performance of the proposed
antenna is also evaluated by analysing the current distribution on the mobile phone
ground plane. The specific absorption rate (SAR) performance of the antenna is also
studied experimentally by measuring antenna near field exposure. The measurement
results are correlated with the calculated ones.
A new dual-band balanced antenna using coplanar waveguide structure is also proposed,
discussed and tested; this is intended to eliminate the balanced feed network. The
predicted and measured results show good agreement, confirming good impedance
bandwidth characteristics and excellent dual-band performance.
In addition, a hybrid method to model the human body interaction with a dual band
balanced antenna structure covering the 2.4 GHz and 5.2 GHz bands is presented.
Results for several test cases of antenna locations on the body are presented and
discussed. The near and far fields were incorporated to provide a full understanding of
the impact on human tissue. The cumulative distribution function of the radiation
efficiency and absorbed power are also evaluated. / UK Engineering and Physical Sciences Research Council (EPSRC)
|
3 |
Balanced antennas for mobile handset applications : simulation and measurement of balanced antennas for mobile handsets, investigating specific absorption rate when operated near the human body, and a coplanar waveguide alternative to the balanced feedAlhaddad, Abdolrauf Gawad January 2012 (has links)
The main objectives of this research are to investigate and design low profile antennas for mobile handsets applications using the balanced concept. These antennas are considered to cover a wide range of wireless standards such as: DCS (1710-1880 MHz), PCS (1850-1990 MHz), UMTS (1920-2170 MHz), WLAN (2400-2500 MHz and 5000-5800 MHz) and UWB frequency bands. Various antennas are implemented based on built-in planar dipole with a folded arm structure. The performance of several designed antennas in terms of input return loss, radiation patterns, radiation efficiency and power gain are presented and several remarkable results are obtained. The measurements confirm the theoretical design concept and show reasonable agreement with computations. The stability performance of the proposed antenna is also evaluated by analysing the current distribution on the mobile phone ground plane. The specific absorption rate (SAR) performance of the antenna is also studied experimentally by measuring antenna near field exposure. The measurement results are correlated with the calculated ones. A new dual-band balanced antenna using coplanar waveguide structure is also proposed, discussed and tested; this is intended to eliminate the balanced feed network. The predicted and measured results show good agreement, confirming good impedance bandwidth characteristics and excellent dual-band performance. In addition, a hybrid method to model the human body interaction with a dual band balanced antenna structure covering the 2.4 GHz and 5.2 GHz bands is presented. Results for several test cases of antenna locations on the body are presented and discussed. The near and far fields were incorporated to provide a full understanding of the impact on human tissue. The cumulative distribution function of the radiation efficiency and absorbed power are also evaluated.
|
Page generated in 0.0604 seconds