• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation et réduction de la gigue temporelle de lasers ytterbium ultrabrefs pompés par diode / Timing jitter characterization and control of ultrafast diode pumped Ytterbium lasers

Casanova, Alexis 21 December 2017 (has links)
Ce travail de thèse se concentre sur la caractérisation et la correction de la gigue temporelle de lasers ultrabrefs, c'est-à-dire avec une durée d'impulsion sub-picoseconde, pompés par diode et avec un milieu à gain dopé à l'Ytterbium. Ce type de source laser a bénéficié d'un développement industriel rapide depuis le début des années 2000 et a trouvé de très nombreuses applications, notamment dans le domaine scientifique pour des expériences résolues en temps (FELs, accélérateurs de particules, OPAs...). Dans ce type d’applications, la réduction de la gigue des impulsions permet d’accéder à de meilleures résolutions temporelles et permet d’observer des phénomènes physiques extrêmement brefs.Dans ce travail, la gigue d'oscillateurs lasers ultrabrefs à verrouillage de mode passif a été corrigée et caractérisée en générant un signal d'erreur par photo-détection directe d'une part et par corrélation croisée optique d'autre part. La correction de la gigue temporelle par corrélation croisée optique permet d'obtenir une gigue résiduelle inférieure à 5fs, de l'ordre de la durée d'un cycle optique, avec des oscillateurs compacts et industriels. Une gigue résiduelle de ce niveau permet d’accéder à des expériences résolues en temps exigeantes en termes de stabilités temporelles des sources de lumière utilisée, par exemple une expérience d’interaction lumière-matière de type pompe-sonde avec une source laser à électrons libres.Un nouvel instrument basé sur la corrélation statistique des signaux de gigue générés par deux canaux de corrélations croisées optiques a été mis en place. Un tel instrument a permis de caractériser complètement la gigue temporelle d'oscillateurs à des fréquences de Fourier supérieures à la dizaine de kiloHertz lasers ultrabref en atteignant un plancher de bruit sub-zeptoseconde. La gigue additive d'amplificateurs lasers ultrabrefs a également été caractérisée par corrélation croisée optique, cela afin d'acquérir une compréhension globale de la gigue introduite par une chaîne laser ultrabrève amplifiée.Les mesures effectuées ont permis d’analyser les origines physiques de la gigue dans un système laser ultrabref. Ces résultats permettront à terme d’améliorer la correction de la gigue sur les systèmes industriels étudiés ainsi que de développer de nouvelles sources laser ultrabrèves intrinsèquement moins bruyantes. Une telle étude expérimentale pourra également servir de support pour éventuellement enrichir le modèle théorique des perturbations dans un laser ultrabref. / The main scope of this PhD work is to characterize and reduce the timing jitter of optical pulses with sub-picosecond duration, emitted by diode-pumped ultrafsat lasers with Ytterbium doped gain media. Such laser sources have been rapidly enhanced by a high-grade and efficient industrial development, giving access to numerous novel applications, especially in the fields of applied physics and chemistry with time-resolved experiments based on interaction between light and matter. In this latter topic resides a constant need to minimize the laser pulse train timing jitter in order to access physical phenomena with extremely short timescales such as electrons recombination.Two main detection techniques have been studied to characterize the timing jitter from passively modelocked laser oscillators. The first technique is based on direct photo-detection in the microwave domain whilst the second technique makes use of the balanced optical cross-correlation. Residual timing jitter from industrial compact laser oscillators has been reduced below 5fs, close to an optical cycle period. This performance makes the laser oscillators produced by Amplitude-Systemes already suitable for challenging time-resolved pump-probe experiments, in the presence for example of a free electron laser source.Timing jitter analysis has been enhanced by studying the cross-spectrum from jitter signals generated from two balanced optical cross-correlators. This technique allowed the entire characterization of the timing jitter density spectrum from laser oscillators above the ten-kiloHertz Fourier frequency with a sub-zeptosecond noise floor. Additive timing jitter from ultrafast laser amplifiers has also been studied with optical cross-correlation and gives a global comprehension of the timing jitter from a complete high-energy ultrafast laser chain.The collected measurments will be conducive to design a more adapted and performant timing synchronization system for industrial laser sources. A better knowledge of the non-trivial jitter sources, dependent on the laser parameters, will also allow to design intrinsically low-noise new laser sources based on the Ytterbium gain media. The cross-spectrum technique developed could be of use to characterize other laser technologies and to investigate the theoretical perturbation model of ultrafast lasers with a better experimental insight.
2

Ultrafast laser-induced nanostructuring of metals in regular patterns / Nanostructuration des métaux par motifs réguliers induits par laser ultrabref

Li, Chen 22 May 2016 (has links)
Les structures périodiques de surface induites par laser femtoseconde(fs-LIPSS) attirent l'attention scientifique et technique en raison de la possibilité de produire des nanostructures en dessous de la longueur d'onde optique. Ces éléments sont essentiels pour l'ingénierie de surface et les procédés, notamment en tribologie, mouillabilité, la mécanique, le marquage et la lutte contre la contrefaçon. Selon le régime d'interaction laser, en particulier la fluence du laser, le nombre d'impulsions et le type de matériaux, les impulsions ultracourtes peuvent induire des basses et des hautes fréquences spatiales-LIPSS (LSFL et HSFL), avec l'orientation perpendiculaire (┴E) ou parallèle (║E) à la polarisation du laser. Compte tenu de leur potentiel pour la nano-fabrication, ce travail se concentre sur les mécanismes potentiels de formation des LIPSS, en particulier la formation des HSFL sur les alliages métalliques. Afin d'étudier les indices optiques transitoires de matériaux excités dans la formation fs-LIPSS, nous avons d'abord développé de l’ellipsométrie résolue en temps afin de mesurer les indices optiques dynamiques des matériaux excités. Ainsi, nous avons obtenu un aperçu de la dynamique de la fonction diélectrique intrinsèquement liée à la configuration électronique et au réseau cristallin. Des simulations de premiers principes sont ensuite utilisées pour révéler la façon dont la configuration électronique change au cours de l'excitation, responsable d’indices optiques transitoires. Les effets des indices optiques transitoires sont pris en compte dans les mécanismes de formation de LIPSS. Sur la base d’expériences de formations des fs-LIPSS sur six matériaux différents, incluant du tungstène métallique, du silicium semiconducteur, de la silice fondue diélectrique, un superalliage monocristallin CMSX-4, un alliage amorphe de Zr-BMG et son alliage cristallin correspondant Zr-CA, nous étudions les mécanismes de formation des LIPSS dans le domaine électromagnétique par des simulations de différences finies dans le domaine temporel (FDTD), liées à la distribution d'énergie électromagnétique suivie par la dynamique de l'excitation optique et par l'évolution de la topologie avec le nombre d’impulsions et les matériaux. Nous nous concentrons sur l'origine électromagnétique de la formation des LIPSS et révélons un facteur principal potentiel de leur formation. Elle peut être expliquée par la modulation de l'énergie déposée sur la surface par des effets électromagnétiques. La modulation de l'énergie provient principalement de l'interférence entre le laser incident et les ondes de surface diffusées (pour LSFL ( ┴ E)), complétée par l'interférence entre les ondes de surface diffusées (pour HSFL (┴E)). Spécialement, pour HSFL (║E) sur Zr-CA, nous avons proposé que les scénarios de formation reposent sur des processus individuels d’exaltation anisotrope du champ. La topologie de surface, évoluant avec le nombre d'impulsions laser, induit une modulation d'énergie déposée sur la surface définie et amplifiée par la rétroaction / Femtosecond laser-induced periodic surface structures (fs-LIPSS) attract the scientific and technical attention due to the ability to produce nanostructures below the optical wavelength. These are essential for surface engineering and treatment, notably in tribology, wettability, mechanics, marking and counterfeiting. Depending on the regime of laser interaction, particularly on the laser fluence, pulse number and material type, ultrashort pulses can induce the low- and high-spatial-frequency-LIPPS (LSFL and HSFL), with the orientation perpendicular (┴E) or parallel (║E) to the laser polarization. Considering their potential in the nano-manufacturing, this work focuses on potential mechanisms for LIPSS formation, especially HSFL formation on the metallic alloys. In order to investigate the transient optical indices of excited materials in fs-LIPSS formation, we first developed time-resolved ellipsometry to measure dynamic optical indices of excited materials. Thus we gain insights in the dynamics of the dielectric function where this is intrinsically related to the electronic configuration and lattice structure. First principle simulations are then used to reveal how the electronic configuration changes during the excitation, responsible for the transient optical indices. The effects of transient optical indices are considered in the LIPSS formation mechanisms. Based on the experiments of fs-LIPSS formations on six different materials, involving metal tungsten, semiconductor silicon, dielectric fused silica, single-crystal superalloy CMSX-4, amorphous alloy Zr-BMG and its corresponding crystal alloy Zr-CA, we investigate the LIPSS formation mechanisms in the electromagnetic domain by finite-difference time-domain (FDTD) simulations, related to the electromagnetic energy distribution followed by the dynamics of optical excitation, evolving topologies with pulse number and materials.We focus on the electromagnetic origin of LIPSS formation and reveal a potential primary factor for LIPSS formation. LIPSS formation can be explained by deposited energy modulation on surface via electromagnetic effects. The energy modulation mainly comes from the interference between incident laser and scattered surface wave (for LSFL(┴E)), being complemented by the interference between scattered surface waves (for HSFL(┴E)). Specially, for HSFL (║E) on Zr-CA, we proposed that the formation scenarios rely on individual anisotropic field-enhancement processes. The evolving surface topology with laser pulse number leads to a feedback-driven energy modulation deposited on surface
3

Propagation non-linéaire d'impulsions laser ultrabrèves dans l'atmosphère et applications<br />Des filaments blancs pour sonder l'atmosphère

Kasparian, Jérôme 30 May 2005 (has links) (PDF)
Lorsqu'elles se propagent dans l'air les impulsions laser ultrabrèves (fs) et de forte puissance forment des filaments ionisés sur de longues distances, où est produit un continuum de lumière blanche qui s'étend de l'ultraviolet (230 nm) à l'infrarouge (4,5 µm). Ce processus fortement non-linéaire résulte d'un équilibre dynamique entre deux effets dus au profil spatial du faisceau : la focalisation par effet Kerr, et la défocalisation par le plasma issu de l'ionisation multiphotonique de l'air. Mon travail de ces dernières années, présenté ici, est consacré à l'étude de cette propagation non-linéaire, et à ses applications pour la physique de l'atmosphère.<br />Une première catégorie d'applications, comme le Lidar à lumière blanche, repose sur l'exploitation du continuum de lumière blanche, par exemple pour réaliser une télédétection multi-composants dans l'air. Une seconde famille repose sur la capacité des filaments de délivrer à grande distance des intensités suffisantes pour induire in situ des effets non-linéaires à distance. Nous avons utilisé cette propriété pour identifier à distance des simulants d'aérosols biologiques ou des cibles solides. Enfin, l'ionisation de l'air dans le filament nous a permis de contrôler des décharges électriques de haute tension, ouvrant la voie vers un paratonnerre laser.
4

Numerical study of ultrashort laser-induced periodic nanostructure formation in dielectric materials / Étude numérique de la formation des nanostructures périodiques induites par laser ultrabref dans les matériaux diélectriques

Rudenko, Anton 11 July 2017 (has links)
Cette thèse se concentre sur l'étude numérique de l'interaction laser ultrabref avec les diélectriques transparents. En particulier, le phénomène d'auto-organisation des nanoréseaux dans la silice est discuté et un modèle multiphysique est proposé pour expliquer le mécanisme de leur formation. Les nanoréseaux en volume sont des nanostructures périodiques de périodicité sub-longueur d'onde, qui consistent en un matériau moins dense et sont générés par une irradiation laser multi-impulsionnelle femtoseconde dans certains verres, cristaux et semiconducteurs. Leur origine physique ainsi que les conditions d'irradiation laser pour leur formation et leur effacement sont investiguées dans ce travail théorique. Pour simuler la propagation nonlinéaire dans les verres, les équations de Maxwell sont couplées avec l'équation d'évolution de la densité électronique. Il est démontré que les nanoplasmas périodiques 3D sont formés pendant l'interaction laser ultrabref avec les inhomogénéités de la silice fondue. Les nanopores induits par laser sont supposés jouer le rôle de centres inhomogènes de diffusion. La périodicité sub-longueur d'onde et l'orientation des nanoplasmas dépendante de la polarisation, révélées dans cette thèse, font d'eux un excellent candidat pour expliquer la formation des nanoréseaux en volume. En plus, il est demontré que les nano-ripples sur la surface de silice fondue et les nanoréseaux en volume ont des mécanismes de formation similaires. Pour justifier la présence de nanopores dans la silice fondue irradiée par laser, les processus de décomposition du verre sont étudiés. Premièrement, les profils de température sont calculés sur la base d'un modèle électron-ion. Ensuite, à partir des températures calculées, des critères de cavitation et de nucléation dans le verre ainsi que des équations hydrodynamiques de Rayleigh-Plesset, les conditions pour la formation des nanopores et la survie des nanoréseaux en volume sont élucidées. Pour établir les dépendances des paramètres du laser de formation et d'effacement des nanoréseaux en volume, l'approche multiphysique est développée comprenant la propagation du laser ultrabref dans le verre, les processus d'excitation/relaxation électroniques et le modèle à deux températures. Les résultats numériques fournissent les paramètres du laser en fonction de l'énergie de l'impulsion, sa durée et le taux de répétition pour induire des nanoréseaux en volume, en bon accord avec les expériences nombreuses et indépendantes de la littérature. Le travail réalisé a non seulement permis de déterminer les mécanismes de formation des nanostructures périodiques mais améliore également notre connaissance du contrôle optimal des paramètres du laser sur la réponse ultrarapide d matériau, en ouvrant des nouvelles opportunités de traitement des diélectriques par laser ultrabref / This thesis is focused on the numerical modeling of ultrashort laser interaction with transparent dielectrics. More particularly, the phenomenon of self-organized volume nanogratings in fused silica bulk is discussed and a multiphysical model is proposed to explain the mechanism of their formation. Volume nanogratings are sub-wavelength periodic nanostructures, consisting of less dense material, which are commonly induced by multipulse femtosecond laser irradiation in some glasses, crystals and indirect semiconductors. Their physical origin as well as the laser irradiation conditions for theirformation and erasure are investigated in this theoretical work. To model the nonlinear propagation inside glass, Maxwell's equations are coupled with rate equation. It is shown that three-dimensional periodic nanoplasmas are formed during ultrashort laser interaction with fused silica inhomogeneities. Laser-induced nanopores are proposed to play the role of inhomogeneous scattering centers. Subwavelength periodicity and polarization dependent orientation of the nanoplasmas, revealed in this thesis, make them a strong candidate for explaining volume nanogratings formation. Additionally, it is demonstrated that the nanoripples on fused silica surface and volume nanogratings have similar formation mechanisms. To justify the presence of nanopores in laser-irradiated fused silica bulk, glass decomposition processes are investigated. Firstly, the temperature profiles are found by incorporating the electron-ion temperature model. Then, based on the calculated temperatures, criteria for cavitation and nucleation in glass and also hydrodynamic Rayleigh-Plesset equation, the conditions for nanopores formation and for volume nanogratings survival are elucidated. To define the laser parameter dependencies on the volume nanogratings formation/erasure, a selfconsistent multiphysical approach is developed including ultrafast laser propagation in glass, multiple rate equation to take into account excitation/relaxation processes and two-temperature model. The numerical results provide a laser parameter window as a function of laser pulse energy, laser pulse duration and repetition rate for volume nanogratings consistent with numerous independent experiments. The performed work not only provides new insights into the formation mechanisms of periodic nanostructures but also improves our knowledge of the optimal laser parameter control over ultrafast material response, opening new opportunities in ultrashort laser processing of dielectrics
5

Étude de la transition de phase ultra rapide solide/liquide d'un semi conducteur par diffraction X femtoseconde

Fourmaux, Sylvain 22 November 2002 (has links) (PDF)
Ce travail de Thèse est lié à l'émergence d'un nouvel axe scientifique de recherche : la science X ultrarapide. La recherche effectuée dans les communautés des lasers intenses et des accélérateurs (synchrotrons) met en évidence une nouvelle génération d'outils associés au rayonnement X, les sources X ultrabrèves. Ces nouvelles sources de durée d'impulsion d'une centaine de femtosecondes (1 fs = 10e-15 s) devraient avoir un impact formidable, par exemple, dans l'étude de la dynamique atomique qui est actuellement limitée à plusieurs dizaines de picosecondes (1 ps = 10e-12 s). Cette thèse présente la première expérience d'application de ces sources X ultrabrèves qui utilisent le rayonnement X produit par l'interaction d'un laser intense avec une cible solide (source laser/plasma). La transition de phase solide/liquide ultrarapide d'un semi conducteur a été mise en évidence et caractérisée à l'aide de la technique de diffraction X résolue en temps. L'analyse des résultats expérimentaux a été effectuée à l'aide d'un modèle simple de l'interaction laser semi conducteur reposant sur une extrapolation du modèle de Drude pour un régime à haute densité de porteurs (10e22 /cm3).

Page generated in 0.0513 seconds