• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 10
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 54
  • 54
  • 18
  • 15
  • 14
  • 11
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Studium magneticky uspořádaných materiálů pomocí optické spektroskopie / Investigation of magnetically-ordered materials by optical spectroscopy

Saidl, Vít January 2013 (has links)
In this work we study thin epilayers of new antiferromagnetic semimetal CuMnAs by time- resolved magneto-optical experiments. In 10 nm layers of CuMnAs, we observed a harmonic dependence of the dynamical magneto-optical signal on the orientation of probe pulse linear polarization. This shows that in this 10 nm layer there is an in-plane uniaxial magnetic anisotropy which can be detected due to a quadratic magneto-optical effect - magnetic linear dichroism. From the measured data we also estimated the Néel temperature and the spectral variation of the magneto-optical coefficient describing the magnitude of the magnetic linear dichroism in this sample.
32

Controlling the dynamics of electrons and nuclei in ultrafast strong laser fields

Kling, Nora G. January 1900 (has links)
Doctor of Philosophy / Department of Physics / Itzik Ben-Itzhak / One ultimate goal of ultrafast, strong- field laser science is to coherently control chemical reactions. Present laser technology allows for the production of intense (>10[superscript]13 W/cm[superscript]2), ultrashort ( 5 fs), carrier-envelope phase-stabilized pulses. By knowing the electric field waveform, sub-cycle resolution on the order of 100's of attoseconds (1 as=10[superscript]-18 s) can be reached -- the timescale for electron motion. Meanwhile, the laser field strengths are comparable to that which binds electrons to atoms or molecules. In this intense-field ultrashort-pulse regime one can both measure and manipulate dynamics of strong-field, quantum-mechanical processes in atoms and molecules. Despite much progress in the technology, typical durations for which lasers can be reliably locked to a specific carrier-envelope phase ranges from a few minutes to a few hours. Experiments investigating carrier-envelope phase effects that have necessarily long data acquisition times, such as those requiring coincidence between fragments originating from the same atom or molecule, are thus challenging and uncommon. Therefore, we combined the new technology for measuring the carrier-envelope phase of each and every laser shot with other single-shot coincidence three-dimensional momentum imaging techniques to alleviate the need for carrier-envelope phase stabilized laser pulses. Using phase-tagged coincidence techniques, several targets and laser-induced processes were studied. One particular highlight uses this method to study the recollision process of non-sequential double ionization of argon. By measuring the momentum of the two electrons emitted in the process, we could study their energy sharing. Furthermore, by selecting certain carrier-envelope phase values, and therefore laser pulses with a particular waveform, events with single recollision could be isolated and further analyzed. Another highlight is our studies of carrier-envelope phase effects in the dissociation of the benchmark H[subscript]2[superscript[+] ion beam. Aided by near-exact quantum mechanical calculations, we could identify interfering pathways which lead to the observed spatial asymmetry. These and other similar experiments are described in this thesis as significant steps toward their ultimate control.
33

Development of an original 10 kHz Ti : Sa regenerative cavity allowing 17 fs CEP stable 1 kHz TW-class amplification or wavelength tunability / Développement d’une nouvelle configuration de cavité régénérative à 10 kHz, permettant l’amplification à1 kHz d’impulsions de durée 17 fs, stabilisées en CEP dans la classe TW ou accordables en longueur d’onde à10 ou 1 kHz

Golinelli, Anna 21 January 2019 (has links)
Au cours de dix dernières années la science aux attoseconde ou Physique au champ-fort a été l’objet d’un fort développement. La production d’impulsions laser énergétiques de courte durée à haute cadence et stabilisées en CEP constitue la première étape pour accéder aux dynamiques ultra-rapides caractérisant l’interaction de la matière avec une source de lumière cohérente, intense et ultra-rapide. Le travail de cette thèse consiste à améliorer globalement les performances d’un système laser Ti:Sa à haute cadence optimisé pour la génération des impulsions attoseconde. Nous avons développé une nouvelle configuration de cavité régénérative fonctionnant à 10 kHz qui permet une meilleure gestion des effets thermiques dans le cristal. En sortie de l’amplificateur les impulsions atteignent des valeurs de puissance de 5 W en bande étroite (35 fs), ou 2.7 W en bande spectrale large permettant une compression des impulsions proche de 17 fs. La CEP des impulsions en sortie d’amplificateur a été stabilisée ; le bruit résiduel mesuré tir-à-tir est de 210 mrad pendant trois heures.L’amplificateur peut supporter également le fonctionnement en mode accordable, en sélectionnant des spectres de 30 à 40 nm de largeur à mi-hauteur et en accordant leur longueur d’onde centrale dans une gamme de 80 nm autour de 800 nm. Nous avons conçu et mis en fonctionnement un amplificateur multi-passages non-cryogéné à imagerie par lentille thermique pour accroître la puissance des impulsions jusqu’à 10 W à une cadence de 1 kHz. Le régime de forte saturation d’amplificateur garantit une variation négligeable (±3% pic à pic) de la puissance des impulsions en sortie du module, face à une variation importante de la puissance en entrée (±25% pic à pic) sur la bande spectrale accordable. L’amplification peut encore être plus importante grâce à une ligne d’amplification à refroidissement cryogénique, qui permet d’atteindre des puissances au niveau TW, à la cadence de 1 kHz, tout en maintenant un régime de courte durée (17.5 fs) et stabilité en CEP (350 mrad de bruit résiduel tir-à-tir). Nous proposons aussi une étude des sources de bruit de CEP dans les modules hautement dispersifs: nous avons conçu une nouvelle approche numérique sur la base d’un logiciel de tracé de rayon commercial (Zemax) pour évaluer les variations de CEP dans les modules contenant réseaux de diffraction. / The last decade has seen a lot of progress in attosecond science or in strong field physics. Generating energetic, few-cycle laser pulses with stabilized Carrier-Envelope Phase at high repetition rate constitutes the first step to access the ultra-fast dynamics underlying the interaction of matter with intense, ultrashort coherent light source. The work of this thesis consists in globally improving the performances of a high repetition rate Ti:Sa laser system optimized for attosecond science. We present an original 10 kHz Ti:Sa CPA laser based on an newlydesigneddouble-crystal cavity for thermal lensing management. The amplifier delivers up to 5 W in narrow band mode (35 fs pulses), or 2.7 W in broad band mode, supporting 17 fs pulses after temporal compression. We demonstrate shot-to-shot CEP stabilization with a remaining noise of 210 mrad over three hours at the front-end output. In parallel to the short pulse duration operation mode, it is possible to use the front end in a wavelength tunability mode within a 80 nm range around 800 nm, with a resolution of 1 nm and 30 to 40 nm of bandwidth. We designed and demonstrated a complete water-cooled lens-less multipass amplifier using thermal lensing for modeadaptation boosting the pulse energy up to 10mJ at 1 kHz repetition rate (up to 10 W). The saturation regime of the amplifier ensures negligible variation (±3% peak to peak) of the output power for significant variation of the input power (±25% peak to peak) over the tunability range. The energy scalability of the front-end is demonstrated by coupling its output to cryogenically cooled amplifier, delivering 1 kHz, TW-class pulses at 17.5 fs and CEP stabilized with a residual noise of 350 mrad. A study of CEP noise sources in high dispersive module is also addressed, proposing a numerical approach based on a commercial ray-tracing software (Zemax) for predicting CEP fluctuation in grating based modules.
34

Investigating the Instrumentational Components of Laser Electrospray Mass Spectrometry: Analytical Method Development and Applications

Parise, Rachel, 0000-0002-6796-1573 January 2022 (has links)
Analytical method validation is the process of establishing that an analytical technique is applicable for a proposed objective. Early in the method development of a new analytical technique an understanding of the instrumental components and procedures is elaborated through scientifically based optimization. The optimization experiments are used to define the operational parameters that yield the maximum performance by the analytical technique for the target analyte before commencing validation studies. This dissertation details method development through experimental investigations instrumental components of LEMS (substrate, laser parameters, and electrospray source conditions). Each instrumental component has a number of induvial parameters which are optimized to yield the maximum laser electrospray mass spectrometry (LEMS) signal intensity for a given analytical problem. LEMS uses a nonresonant, femtosecond (fs) laser to ablate analytes from a surface. Those ablated analytes are then captured by a perpendicular electrospray, ionized, and desolvated to produce ions which travel into the inlet of the mass spectrometer for analysis. Each element of the LEMS experimental setup works in a complementary fashion to generate a mass spectral signal which have specific optimization steps that can dramatically impact the data that can be acquired. The results of the optimization for each instrumental component will then be applied to preliminary method development experiments for the analysis of pharmaceutical compounds from complex formulations biomarker discovery for mice afflicted with a traumatic brain injury.The effect of the laser pulse duration on the ablation mechanism and amount of laser induced conformational changes of aqueous myoglobin was investigated using 55 fs, 56 picosecond (ps), and 10 nanosecond (ns) pulses and laser pulse energies from 0.05 to 1.6 mJ. It was found that the optical properties of the substrates (stainless-steel and quartz) and laser intensity regimes accessible by each pulse duration determined the amount of myoglobin ablated and subsequent mass spectral signal intensity. Laser ablation of myoglobin from both substrates using all laser pulse energies was observed for the 55 fs pulse while the 10 ns pulse required minimum pulse energies of 0.4 and 1.2 mJ for ablation of myoglobin to occur from stainless-steel and quartz, respectively. As the pulse duration increases, thermal processes increase which dictated the relative amount of protein unfolding, number of phosphate adducts, and degree of solvent adduction. Many of the common laser electrospray ionization (ESI) hybrid techniques employ ns pulse durations. However, the amount of ablated myoglobin originating from a ns pulse was observed to be dependent on the amount of energy that was absorbed by the substrate or sample. Experiments to increase the signal intensity while implementing ns laser electrospray mass spectrometry (ns-LEMS) were performed by exploiting the optical properties of nanomaterials as a potential matrix for desorption and detection of myoglobin. To estimate the contribution of the surface plasmon resonance (SPR) to the desorption of myoglobin under the different pulse duration regimes, the addition of an aqueous gold nanostar (GNS) matrix was implemented. GNSs have a SPR maximum of ~750 nm which overlaps strongly with the 780 nm laser wavelength. Gold nanospheres, which have a SPR of ~530 nm, have an absorption overlap 25 times less than that of the nanostars with the 785 nm laser light and therefore were chosen as a control gold nanoparticle matrix. It was observed that protein mixed with solution phase GNSs improved the laser ablation and consequent mass spectral signal intensity of the protein in comparison to both the nanosphere addition and ablation from quartz without nanomaterial addition for the 55 fs, 56 ps, and 10 ns pulses. This dissertation also extends to an investigation of the electrospray source and the roles that the nebulizing gas pressure, electrospray solution flow rate, and needle protrusion from the emitter sheath effects the electrospray analyte signal and stability. Interactions between the electrospray droplets and nebulizing gas were elucidated using an ablation chamber in which laser ablated analytes were carried via the nebulizing gas flow through the nebulizer sheath to interact with the electrospray Taylor cone, jet, and subsequent droplets. The signal intensity and relative standard deviation (RSD) of an infused Victoria blue solution was used to assess conventional ESI optimization experiments while a mixture of Gly-Gly-His, lactose, adenosine, and vitamin B12 was laser ablated within the ablation chamber for the optimization of the remote ablation device. It was found that a needle protrusion flush with the nebulizing sheath wall, 9 psi nebulizing gas pressure, and 9 µL/min ESI flow rate yielded the highest signal intensity for low and high mass analytes when utilizing the ablation chamber. However, the conventional ESI signal and stability was maximized using a needle protrusion of 0.6 mm from the sheath, 18 psi nebulizing gas pressure, and 9 µL/ min ESI flow rate. The last two chapters describe collaborative efforts with GlaxoSmithKline (GSK) and Temple University’s Lewis Katz School of Medicine with the application of LEMS to real world problems. The first of these chapters explores the preliminary method development results for sampling protocols of LEMS in a pathway to measuring the active ingredient in a formulation when differences in concentration are a percent or less for GSK. The results from the method development and optimization experiments in the previous chapters were applied to the GSK pharmaceutical manufacturing paradigm to test product quality in-line and in real-time instead of testing in a lab at the end of the manufacturing process. The LEMS sampling protocols involved ablation of either powder, compressed form, or solution containing powder using laser ablation. The ablated material was then entrained in an electrospray aerosol and transferred into a mass spectrometer for quantitative measurement of the molecules making up the powder, pill, or solution. Measurement time was on the order of seconds so that thousands of samples can be potentially measured in an hour. Future prospective experiments include additional optimization of the solution phase and compressed form sampling methods and, ultimately, the method validation of LEMS for quantifying active ingredients in pharmaceutical formulations. The last chapter seeks to develop new methods to map all biomarkers in traumatic brain injury (TBI) through mass spectrometry imaging (MSI), serum analysis, and protein derivatization assays. In this work, the Ramirez laboratory employs the controlled cortical impact model of experimental TBI in mice, harvests the brain (post injury) and prepares sections for analytical analysis. TBI is a complex injury involving multiple physiological and biochemical alterations to tissue. The potentially thousands of relevant biomarkers spread over a volume of thousands of mm3 makes the spatially resolved chemical analysis of brain a big data problem to which principal component analysis is applied. / Chemistry
35

Femtosecond-Laser-Enabled Fiber-Optic Interferometric Devices

Yang, Shuo 11 November 2020 (has links)
During the past decades, femtosecond laser micro-fabrication has gained growing interests owing to its several unique features including direct and maskless fabrication, flexible choice of materials and geometries, and truly three-dimensional fabrication. Moreover, fiber-optic sensors have demonstrated distinct advantages over traditional electrical sensors such as the immunity to electromagnetic interference, miniature footprint, robust performance, and high sensitivity. Therefore, the marriage between femtosecond laser micro-fabrication and optical fibers have enabled and will continue to offer vast opportunities to create novel structures for sensing applications. This dissertation focuses on design, fabrication and characterization of optical-fiber based interferometric devices for sensing applications. Three novel devices have been proposed and realized, including point-damage-based Fiber Bragg gratings in single-crystal sapphire fibers, all-sapphire fiber-tip Fabry-Pérot cavity, and in-fiber Whispering-Gallery mode resonator / Doctor of Philosophy / Optical fibers are an optical platform with cylindrical symmetry with overall diameter typically within 50 to 500 μm. The miniature footprint and large aspect ratio make it attractive in sensing applications, where intrusion, flexibility, robustness and small size are key design parameters. Beyond that, fiber-optic sensors also possess distinct operational advantages over traditional electrical sensors such as high sensitivity, immunity to electromagnetic interference (EMI), and fully distributed deployment. Owing to the above advances, fiber-optic sensors have been one of the key technologies in the broader sensing field for the past decades. However, the unique cylindrical shape of optical fiber makes it naturally less compatible to those well-developed fabrication technologies in the current sophisticated semiconductor industry. During the past decades, the possibility of three-dimensional (3D) writing inside transparent materials with tightly focused ultrafast laser pulses has attracted attention widely among the academy as well as the industry. Therefore, the marriage between ultrafast laser micro-fabrication and optical fibers have enabled and will continue to offer vast opportunities to create novel structures for sensing applications. This dissertation focuses on design, fabrication and characterization of optical-fiber based interferometric devices for sensing applications. Three novel devices have been proposed and realized, including point-damage-based Fiber Bragg gratings in single-crystal sapphire fibers, all-sapphire fiber-tip Fabry-Pérot cavity, and in-fiber Whispering-Gallery mode resonator.
36

Time-Resolved Studies of Magnetic and Non-Magnetic Narrow-Gap Semiconductors

Nontapot, Kanokwan 11 September 2008 (has links)
In recent years, spin relaxation, injection, and manipulation in semiconductors have attracted considerable interest because of several potential applications in "spintronic" devices and the necessity to understand and control spin-based phenomena. In light of the growing interest in spin-related phenomena and devices, there is now renewed interest in the science and engineering of narrow gap semiconductors (NGS). NGS based heterostructures are particularly interesting for spintronic applications due to their large spin-orbit coupling, which leads to considerable zero-field spin splitting. NGS are also candidates for electronic applications, such as high-speed and low-power microprocessors; as reported recently by Intel. Furthermore, as switching rates in electronic devices are pushed to even higher frequencies, it is important to understand dynamics in semiconductors such as NGS on femtosecond time-scales. In this thesis, time-resolved studies of magnetic and non-magnetic NGS using ultrafast-laser spectroscopy techniques such as pump-probe spectroscopy and magneto-optical Kerr/Faraday effect, are reported. Our samples include: InSb-based quantum wells with different confinement potentials; InMnSb films, the newest III-V ferromagnetic semiconductors; and InAs films. The samples for these studies have been provided by the groups of Prof. Santos at the University of Oklahoma, Prof. Furdyna at the University of Notre Dame, and Prof. Guido at Virginia Tech. The objectives in this thesis have been to: a) understand charge/spin dynamics in NGS with novel confinement potentials, b) probe the effect of magnetic impurities on the spin/charge dynamics, and c) develop concepts for spin based device applications. Several specific questions and concepts have been addressed including: the effect of large spin-orbit interaction in NGS on the dynamics, how large Rashba spin splitting in these materials affect the spin coherence life time, and carrier/spin dynamics in ferromagnetic semiconductor structures. / Ph. D.
37

Quantum control of molecular fragmentation in strong laser field

Zohrabi, Mohammad January 1900 (has links)
Doctor of Philosophy / Department of Physics / Itzhak Ben-Itzhak / Present advances in laser technology allow the production of ultrashort (≲5 fs, approaching single cycle at 800 nm), intense tabletop laser pulses. At these high intensities laser-matter interactions cannot be described with perturbation theory since multiphoton processes are involved. This is in contrast to photodissociation by the absorption of a single photon, which is well described by perturbation theory. For example, at high intensities (≳5×10[superscript]13 W/cm[superscript]2) the fragmentation of molecular hydrogen ions has been observed via the absorption of three or more photons. In another example, an intriguing dissociation mechanism has been observed where molecular hydrogen ions seem to fragment by apparently absorbing no photons. This is actually a two photon process, photoabsorption followed by stimulated emission, resulting in low energy fragments. We are interested in exploring these kinds of multiphoton processes. Our research group has studied the dynamics and control of fragmentation induced by strong laser fields in a variety of molecular targets. The main goal is to provide a basic understanding of fragmentation mechanisms and possible control schemes of benchmark systems such as H[subscript]2[superscript]+. This knowledge is further extended to more complex systems like the benchmark H[subscript]3[superscript]+ polyatomic and other molecules. In this dissertation, we report research based on two types of experiments. In the first part, we describe laser-induced fragmentation of molecular ion-beam targets. In the latter part, we discuss the formation of highly-excited neutral fragments from hydrogen molecules using ultrashort laser pulses. In carrying out these experiments, we have also extended experimental techniques beyond their previous capabilities. We have performed a few experiments to advance our understanding of laser-induced fragmentation of molecular-ion beams. For instance, we explored vibrationally resolved spectra of O[subscript]2[superscript]+ dissociation using various wavelengths. We observed a vibrational suppression effect in the dissociation spectra due to the small magnitude of the dipole transition moment, which depends on the photon energy --- a phenomenon known as Cooper minima. By changing the laser wavelength, the Cooper minima shift, a fact that was used to identify the dissociation pathways. In another project, we studied the carrier-envelope phase (CEP) dependences of highly-excited fragments from hydrogen molecules. General CEP theory predicts a CEP dependence in the total dissociation yield due to the interference of dissociation pathways differing by an even net number of photons, and our measurements are consistent with this prediction. Moreover, we were able to extract the difference in the net number of photons involved in the interfering pathways by using a Fourier analysis. In terms of our experimental method, we have implemented a pump-probe style technique on a thin molecular ion-beam target and explored the feasibility of such experiments. The results presented in this work should lead to a better understanding of the dynamics and control in molecular fragmentation induced by intense laser fields.
38

Studium precese magnetizace v materiálech a strukturách pro spintroniku / Studium precese magnetizace v materiálech a strukturách pro spintroniku

Kašpar, Zdeněk January 2016 (has links)
In this thesis we studied precession mechanism in ferromagnetic thin film half-metal NiMnSb. We measured magnetization oscillations using optical pump and probe experiment at temperatures between 15 and 200 K and we evaluated the magnetic anisotropy fields, spin stiffness and Gilbert damping. New setup for ferromagnetic resonance measurement was built utilizing vector network analyser. With this setup we measured FMR at temperatures between 300 and 75 K. We evaluated the same parameters from FMR experiments as from the optical one. We found very good agreement in results obtained by the two methods. Powered by TCPDF (www.tcpdf.org)
39

Dynamika spinové polarizace v polovodičích / Dynamics of spin polarization in semiconductors

Janda, Tomáš January 2012 (has links)
In this work we study ultrafast laser-induced magnetization dynamics in samples of ferromagnetic semiconductor Ga1−xMnxAs with a nominal concentration of Mn within the range of x = 0,015-0,14. To get information about magnetization movement we use magneto-optic phenomena PKE and MLD in a time-resolved pump & probe experiment. Thorough analysis of the measured magneto-optical signal allows us to disentangle contributions due to angular movement of magnetization and due to demagnetization and to reconstruct 3D motion of magnetization vector without any numerical modeling. First we explain the basis of this experimental method and we demonstrate its utilization on the measured data. After that we study angular movement of magnetization vector and its dependence on the external magnetic field, excitation intensity and Mn concentration. The pump pulse helicity dependent and independent dynamics were treated separately. In the case of demagnetization we have been able to observe not only its intensity and Mn doping dependence but also the magnetic field dependence, which has not been reported so far in the literature.
40

High speed mask-less laser-controlled precision micro-additive manufacture

Ten, Jyi Sheuan January 2019 (has links)
A rapid, mask-less deposition technique for writing metal tracks has been developed. The technique was based on laser-induced chemical vapour deposition. The novelty in the technique was the usage of pulsed ultrafast lasers instead of continuous wave lasers in pyrolytic dissociation of the chemical precursor. The motivation of the study was that (1) ultrafast laser pulses have smaller heat affected zones thus the deposition resolution would be higher, (2) the ultrashort pulses are absorbed in most materials (including those transparent to the continuous wave light at the same wavelength) thus the deposition would be compatible with a large range of materials, and (3) the development of higher frequency repetition rate ultrafast lasers would enable higher deposition rates. A deposition system was set-up for the study to investigate the ultrafast laser deposition of tungsten from tungsten hexacarbonyl chemical vapour precursors. A 405 nm laser diode was used for continuous wave deposition experiments that were optimized to achieve the lowest track resistivity. These results were used for comparison with the ultrafast laser track deposition. The usage of the 405 nm laser diode was itself novel and beneficial due to the low capital and running cost, high wall plug efficiency, high device lifetime, and shallower optical penetration depth in silicon substrates compared to green argon ion lasers which were commonly used by other investigators. The lowest as-deposited track resistivity achieved in the continuous wave laser experiments on silicon dioxide coated silicon was 93±27 µΩ cm (16.6 times bulk tungsten resistivity). This deposition was done with a laser output power of 350 mW, scan speed of 10 µm/s, deposition pressure of 0.5 mBar, substrate temperature of 100 °C and laser spot size of approximately 7 µm. The laser power, scan speed, deposition pressure and substrate temperature were all optimized in this study. By annealing the deposited track with hydrogen at 650 °C for 30 mins, removal of the deposition outside the laser spot was achieved and the overall track resistivity dropped to 66±7 µΩ cm (11.7 times bulk tungsten resistivity). For ultrafast laser deposition of tungsten, spot dwell experiments showed that a thin film of tungsten was first deposited followed by quasi-periodic structures perpendicular to the linear polarization of the laser beam. The wavelength of the periodic structures was approximately half the laser wavelength (λ/2) and was thought to be formed due to interference between the incident laser and scattered surface waves similar to that in laser-induced surface periodic structures. Deposition of the quasi-periodic structures was possible on stainless steel, silicon dioxide coated silicon wafers, borosilicate glass and polyimide films. The thin-films were deposited when the laser was scanned at higher laser speeds such that the number of pulses per spot was lower (η≤11,000) and using a larger focal spot diameter of 33 µm. The lowest track resistivity for the thin-film tracks on silicon dioxide coated silicon wafers was 37±4 µΩ cm (6.7 times bulk tungsten resistivity). This value was achieved without post-deposition annealing and was lower than the annealed track deposited using the continuous wave laser. The ultrafast tungsten thin-film direct write technique was tested for writing metal contacts to single layer graphene on silicon dioxide coated silicon substrates. Without the precursor, the exposure of the graphene to the laser at the deposition parameters damaged the graphene without removing it. This was evidenced by the increase in the Raman D peak of the exposed graphene compared to pristine. The damage threshold was estimated to be 53±7 mJ/cm2 for a scanning speed of 500 µm/s. The deposition threshold of thin-film tungsten on graphene at that speed was lower at 38±8 mJ/cm2. However, no graphene was found when the deposited thin-film tungsten was dissolved in 30 wt% H2O2 that was tested to have no effect on the graphene for the dissolution time of one hour. The graphene likely reacted with the deposited tungsten to form tungsten carbide which was reported to dissolve in H2O2. Tungsten carbide was also found on the tungsten tracks deposited on reduced graphene oxide samples. The contact resistance between tungsten and graphene was measured by both transfer length and four-point probe method with an average value of 4.3±0.4 kΩ µm. This value was higher than reported values using noble metals such as palladium (2.8±0.4 kΩ µm), but lower than reported values using other metals that creates carbides such as nickel (9.3±1.0 kΩ µm). This study opened many potential paths for future work. The main issue to address in the tungsten ultrafast deposition was the deposition outside the laser spot. This prevented uniform deposition in successive tracks close to one another. The ultrafast deposition technique also needs verification using other precursors to understand the precursor requirements for this process. An interesting future study would be a combination with a sulphur source for the direct write of tungsten disulphide, a transition metal dichalcogenide that has a two-dimensional structure similar to graphene. This material has a bandgap and is sought after for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. Initial tests using sulphur micro-flakes on silicon and stainless-steel substrates exposed to the tungsten precursor and ultrafast laser pulses produced multilayer tungsten disulphide as verified in Raman measurements.

Page generated in 0.0597 seconds