Spelling suggestions: "subject:"incertainty corelations"" "subject:"incertainty conelations""
1 |
A Framework for Uncertainty RelationsXiao, Yunlong 06 March 2017 (has links) (PDF)
Uncertainty principle, which was first introduced by Werner Heisenberg
in 1927, forms a fundamental component of quantum mechanics.
A graceful aspect of quantum mechanics is that the uncertainty
relations between incompatible observables allow for succinct quan-
titative formulations of this revolutionary idea: it is impossible to
simultaneously measure two complementary variables of a particle in
precision. In particular, information theory offers two basic ways to
express the Heisenberg’s principle: variance-based uncertainty relations
and entropic uncertainty relations.
We first investigate the uncertainty relations based on the sum of
variances and derive a family of weighted uncertainty relations to
provide an optimal lower bound for all situations. Our work indicates
that it seems unreasonable to assume a priori that incompatible
observables have equal contribution to the variance-based sum form
uncertainty relations. We also study the role of mutually exclusive
physical states in the recent work and generalize the variance-based
uncertainty relations to mutually exclusive uncertainty relations.
Next, we develop a new kind of entanglement detection criteria within
the framework of marjorization theory and its matrix representation.
By virtue of majorization uncertainty bounds, we are able to construct
the entanglement criteria which have advantage over the scalar detect-
ing algorithms as they are often stronger and tighter.
Furthermore, we explore various expression of entropic uncertainty
relations, including sum of Shannon entropies, majorization uncer-
tainty relations and uncertainty relations in presence of quantum
memory. For entropic uncertainty relations without quantum side
information, we provide several tighter bounds for multi-measurements,
with some of them also valid for Rényi and Tsallis entropies besides
the Shannon entropy. We employ majorization theory and actions
of the symmetric group to obtain an admixture bound for entropic
uncertainty relations with multi-measurements. Comparisons among
existing bounds for multi-measurements are also given. However,classical entropic uncertainty relations assume there has only classical
side information. For modern uncertainty relations, those who allowed
for non-trivial amount of quantum side information, their bounds
have been strengthened by our recent result for both two and multi-
measurements.
Finally, we propose an approach which can extend all uncertainty
relations on Shannon entropies to allow for quantum side information
and discuss the applications of our entropic framework. Combined with
our uniform entanglement frames, it is possible to detect entanglement
via entropic uncertainty relations even if there is no quantum side in-
formation. With the rising of quantum information theory, uncertainty
relations have been established as important tools for a wide range of
applications, such as quantum cryptography, quantum key distribution,
entanglement detection, quantum metrology, quantum speed limit and
so on. It is thus necessary to focus on the study of uncertainty relations.
|
2 |
Uncertainty relations in terms of the Gini index for finite quantum systemsVourdas, Apostolos 29 May 2020 (has links)
Yes / Lorenz values and the Gini index are popular quantities in Mathematical Economics, and are used here in the context of quantum systems with finite-dimensional Hilbert space. They quantify the uncertainty in the probability distribution related to an orthonormal basis. It is shown that Lorenz values are superadditive functions and the Gini indices are subadditive functions. The supremum over all density matrices of the sum of the two Gini indices with respect to position and momentum states is used to define an uncertainty coefficient which quantifies the uncertainty in the quantum system. It is shown that the uncertainty coefficient is positive, and an upper bound for it is given. Various examples demonstrate these ideas.
|
3 |
Topological Generalizations of the Heisenberg Uncertainty RelationGandhi, Sohang 01 January 2006 (has links)
It is well known that the standard canonical uncertainty relation does not apply to the angular variable ? and its conjugate LZ. That is, the relation ? ø ? L Z > h/2 is false. The break down of the result has to do with difference in topology between the line and the circle. It is thus desirable to generalize the standard uncertainty relation topologically and find satisfactory results for the non-Euclidean spaces. This problem is intimately related to the issue of finding a consistent definition for quantum mechanics on "curved spaces". Just as the Heisenberg uncertainty relation was pivotal in understanding the basic structure of standard quantum mechanics, a solution to this problem should shine some light onto the proper conduct of quantum mechanics on general topological spaces. In this study we explore in detail how the standard uncertainty relation may breakdown. We also address the importance of topological considerations in quantum mechanics in general - we shall show how a change in topological character can change the nature of the quantum mechanics for a system and how the consideration of the topology of a system can greatly organize the solution of a problem and in some cases even be necessary for a. full understanding of the problem. We then discuss the derivation of satisfactory uncertainty relations for the compact, homogeneous spaces of the circle, the n-torus and the n-sphere. Finally, we draw out any implications to the issue of properly defining quantum mechanics on the non- Euclidean spaces.
|
4 |
A Framework for Uncertainty RelationsXiao, Yunlong 20 February 2017 (has links)
Uncertainty principle, which was first introduced by Werner Heisenberg
in 1927, forms a fundamental component of quantum mechanics.
A graceful aspect of quantum mechanics is that the uncertainty
relations between incompatible observables allow for succinct quan-
titative formulations of this revolutionary idea: it is impossible to
simultaneously measure two complementary variables of a particle in
precision. In particular, information theory offers two basic ways to
express the Heisenberg’s principle: variance-based uncertainty relations
and entropic uncertainty relations.
We first investigate the uncertainty relations based on the sum of
variances and derive a family of weighted uncertainty relations to
provide an optimal lower bound for all situations. Our work indicates
that it seems unreasonable to assume a priori that incompatible
observables have equal contribution to the variance-based sum form
uncertainty relations. We also study the role of mutually exclusive
physical states in the recent work and generalize the variance-based
uncertainty relations to mutually exclusive uncertainty relations.
Next, we develop a new kind of entanglement detection criteria within
the framework of marjorization theory and its matrix representation.
By virtue of majorization uncertainty bounds, we are able to construct
the entanglement criteria which have advantage over the scalar detect-
ing algorithms as they are often stronger and tighter.
Furthermore, we explore various expression of entropic uncertainty
relations, including sum of Shannon entropies, majorization uncer-
tainty relations and uncertainty relations in presence of quantum
memory. For entropic uncertainty relations without quantum side
information, we provide several tighter bounds for multi-measurements,
with some of them also valid for Rényi and Tsallis entropies besides
the Shannon entropy. We employ majorization theory and actions
of the symmetric group to obtain an admixture bound for entropic
uncertainty relations with multi-measurements. Comparisons among
existing bounds for multi-measurements are also given. However,classical entropic uncertainty relations assume there has only classical
side information. For modern uncertainty relations, those who allowed
for non-trivial amount of quantum side information, their bounds
have been strengthened by our recent result for both two and multi-
measurements.
Finally, we propose an approach which can extend all uncertainty
relations on Shannon entropies to allow for quantum side information
and discuss the applications of our entropic framework. Combined with
our uniform entanglement frames, it is possible to detect entanglement
via entropic uncertainty relations even if there is no quantum side in-
formation. With the rising of quantum information theory, uncertainty
relations have been established as important tools for a wide range of
applications, such as quantum cryptography, quantum key distribution,
entanglement detection, quantum metrology, quantum speed limit and
so on. It is thus necessary to focus on the study of uncertainty relations.
|
5 |
Convexity and uncertainty in operational quantum foundations / 操作論的な量子論基礎における凸性と不確定性Takakura, Ryo 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23889号 / 工博第4976号 / 新制||工||1777(附属図書館) / 京都大学大学院工学研究科原子核工学専攻 / (主査)教授 斉藤 学, 准教授 田﨑 誠司, 教授 宮寺 隆之 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
6 |
Exploring continuous-variable entropic uncertainty relations and separability criteria in quantum phase space / Étude des relations d’incertitude entropiques à variables continues et des critères de séparabilité dans l’espace des phases quantiqueHertz, Anaëlle 22 February 2018 (has links) (PDF)
The uncertainty principle lies at the heart of quantum physics. It exhibits one of the key divergences between a classical and a quantum system: it is impossible to define a quantum state for which the values of two observables that do not commute are simultaneously specified with infinite precision. A paradigmatic example is given by Heisenberg’s original formulation of the uncertainty principle expressed in terms of variances of two canonically-conjugate variables, such as position x and momentum p, which was later generalized to a symplectic-invariant form by Schrödinger and Robertson. A different kind of uncertainty relations, originated by Białynicki-Birula and Mycielski, again for canonically-conjugate variables, relies on Shannon entropy instead of variances as a measure of uncertainty. In this thesis, we suggest several improvements of these entropic uncertainty relations and highlight the fact that they are better formulated in terms of entropy power, a notion borrowed from the information theory of real-valued signals. Our first novel entropic uncertainty relation takes x-p correlations into account and is consequently saturated by all pure Gaussian states in an arbitrary number of modes, improving on the original formulation by Białynicki-Birula and Mycielski. Our second main result is the derivation of an entropic uncertainty relation that holds for any n-tuples of not-necessarily canonically conjugate variables based on the matrix of their commutators. We then define a general form of the entropic uncertainty principle that combines both previous results. It expresses the incompatibility between two arbitrary variable n-uples and is saturated by all pure Gaussian states. Interestingly, we can also deduce from it the most general form of the Robertson uncertainty relation based on the covariance matrix of n variables.This line of research underlines the interest of defining an entropic uncertainty relation that is intrinsically invariant under symplectic transformations. Then, as a first attempt to reach this goal, we conjecture a symplectic-invariant uncertainty relation that is based on the joint differential entropy of the Wigner function. This conjecture is, however, only legitimate for states with a non-negative Wigner function. We also suggest a complex extension of this so-called Wigner entropy, which could provide the way towards an extension (and proof) of the above conjecture for all states. As a second attempt, we introduce the notion of multi-copy uncertainty observables, exploiting a connection with the algebra of angular momenta. Expressing the positivity of the variance of our multi-copy observable coincides with the Schrödinger-Robertson uncertainty relation, which suggests that the discrete Shannon entropy of such an uncertainty observable provides a new symplectic-invariant measure of uncertainty.Currently available separability criteria for continuous-variable systems imply a necessary and sufficient condition for a two-mode Gaussian state to be separable, but leave many entangled non-Gaussian states undetected. In this thesis, we introduce two improved separability criteria that enable a stronger entanglement detection. The first improved condition is based on the knowledge of an additional parameter, namely the degree of Gaussianity, and exploits a connection with Gaussianity-bounded uncertainty relations by Mandilara and Cerf. We exhibit families of non- Gaussian entangled states whose entanglement remains undetected by the Duan- Simon criterion. The second improved separability criterion is based on our improved entropic uncertainty relation that takes x-p correlations into account, and has the main advantage over the one proposed by Walborn et al. that it does not require any optimization procedure. / Le principe d’incertitude se situe au cœur de la physique quantique. Il représente l’une des différences majeures entre des systèmes classiques et quantiques, soit qu’il est impossible de définir un état quantique pour lequel deux observables qui ne commutent pas auraient des valeurs spécifiées simultanément et avec une précision infinie. La formulation originale du principe d’incertitude est due à Heisenberg et est exprimée en termes des variances de deux variables canoniquement conjuguées, telles que la position x et l’impulsion p. Cela fut par la suite généralisé par Schrödinger et Robertson qui ont donné au principe d’incertitude une forme invariante sous transformations symplectiques. Si l’incertitude est mesurée à l’aide de l’entropie différentielle de Shannon plutôt que des variances, il est alors possible de définir d’autres types de relations d’incertitude. Originellement introduites par Białynicki-Birula et Mycielski, elles expriment également l’incompatibilité entre deux variables canoniquement conjuguées. Dans cette thèse, nous proposons différentes améliorations de ces relations d’incertitude entropiques et mettons particulièrement l’accent sur le fait qu’elles s’expriment mieux sous forme de puissances entropiques, une notion empruntée à la théorie de l’information. En premier lieu, nous introduisons une nouvelle relation d’incertitude entropique qui tient compte des corrélations x-p et qui est par conséquent saturée par tous les états purs Gaussiens, ce qui représente une amélioration par rapport à la formulation originale de Białynicki- Birula et Mycielski. En second lieu, nous dérivons une relation d’incertitude entropique valide pour tous les n-uplets de variables non nécessairement canoniquement conjuguées et basée sur la matrice de leurs commutateurs. Nous définissons ensuite une forme plus générale du principe d’incertitude entropique qui combine les deux résultats précédents. Il exprime l’incompatibilité entre deux n-uplets arbitraires de variables et est saturé par tous les états purs Gaussiens. Notons que de ce principe d’incertitude entropique, nous pouvons déduire la forme la plus générale de la relation d’incertitude de Robertson, basée sur la matrice de covariance de n variables. Les résultats précédents soulignent un des points essentiels de notre axe de recherche: définir une relation d’incertitude entropique intrinsèquement invariante sous trans- formations symplectiques. Afin d’atteindre cet objectif, notre première tentative est de conjecturer une relation d’incertitude — invariante sous transformations symplectiques — basée sur l’entropie différentielle jointe de la fonction de Wigner. Cette conjecture n’est cependant légitime que pour des états décrits par une fonction de Wigner non-négative. Nous proposons aussi une extension complexe de cette en- tropie dite entropie de Wigner, qui pourrait ouvrir la voie vers une extension (et une preuve) de la conjecture proposée ci-dessus qui serait alors valide pour tous les états quantiques. Comme seconde tentative, en exploitant une connexion avec l’algèbre des moments angulaires, nous introduisons la notion d’observables d’incertitude agissant sur plusieurs copies d’un état. Exprimer la positivité de la variance de notre observable coïncide avec la relation d’incertitude de Schrödinger-Robertson, ce qui suggère que l’entropie discrète de Shannon d’une telle observable fournit une nouvelle mesure de l’incertitude. Cette relation d’incertitude est invariante sous transformations symplectiques.Les critères de séparabilité actuellement disponibles pour les variables continues donnent une condition nécessaire et suffisante afin qu’un état Gaussien bimodal soit séparable, mais laissent de nombreux états intriqués non-Gaussiens non détectés. Dans cette thèse, nous introduisons deux nouveaux critères de séparabilité qui permettent une meilleure détection de l’intrication. La première nouvelle condition est basée sur la connaissance d’un paramètre supplémentaire, à savoir le degré de Gaussianité de l’état, et exploite une connexion avec les relations d’incertitude de Mandilara et Cerf bornées par ce degré de Gaussianité. En particulier, nous donnons l’exemple de familles d’états intriqués non Gaussiens dont l’intrication est détectée par notre critère, mais pas par celui de Duan-Simon. Le second critère de séparabil- ité entropique que nous proposons est basé sur notre nouvelle relation d’incertitude entropique qui tient compte des corrélations x-p. Son principal avantage par rapport au critère de Walborn et al. est de ne nécessiter aucune procédure d’optimisation. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
Page generated in 0.1197 seconds