• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 23
  • 16
  • 8
  • 1
  • Tagged with
  • 243
  • 243
  • 62
  • 58
  • 53
  • 36
  • 35
  • 34
  • 34
  • 28
  • 26
  • 26
  • 25
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Inverse Uncertainty Quantification using deterministic sampling : An intercomparison between different IUQ methods

Andersson, Hjalmar January 2021 (has links)
In this thesis, two novel methods for Inverse Uncertainty Quantification are benchmarked against the more established methods of Monte Carlo sampling of output parameters(MC) and Maximum Likelihood Estimation (MLE). Inverse Uncertainty Quantification (IUQ) is the process of how to best estimate the values of the input parameters in a simulation, and the uncertainty of said estimation, given a measurement of the output parameters. The two new methods are Deterministic Sampling (DS) and Weight Fixing (WF). Deterministic sampling uses a set of sampled points such that the set of points has the same statistic as the output. For each point, the corresponding point of the input is found to be able to calculate the statistics of the input. Weight fixing uses random samples from the rough region around the input to create a linear problem that involves finding the right weights so that the output has the right statistic. The benchmarking between the four methods shows that both DS and WF are comparably accurate to both MC and MLE in most cases tested in this thesis. It was also found that both DS and WF uses approximately the same amount of function calls as MLE and all three methods use a lot fewer function calls to the simulation than MC. It was discovered that WF is not always able to find a solution. This is probably because the methods used for WF are not the optimal method for what they are supposed to do. Finding more optimal methods for WF is something that could be investigated further.
132

Quantifying Uncertainty in the Residence Time of the Drug and Carrier Particles in a Dry Powder Inhaler

Badhan, Antara, Krushnarao Kotteda, V. M., Afrin, Samia, Kumar, Vinod 01 September 2021 (has links)
Dry powder inhalers (DPI), used as a means for pulmonary drug delivery, typically contain a combination of active pharmaceutical ingredients (API) and significantly larger carrier particles. The microsized drug particles-which have a strong propensity to aggregate and poor aerosolization performance-are mixed with significantly large carrier particles that cannot penetrate the mouth-throat region to deagglomerate and entrain the smaller API particles in the inhaled airflow. Therefore, a DPI's performance depends on the carrier-API combination particles' entrainment and the time and thoroughness of the individual API particles' deagglomeration from the carrier particles. Since DPI particle transport is significantly affected by particle-particle interactions, particle sizes and shapes present significant challenges to computational fluid dynamics (CFD) modelers to model regional lung deposition from a DPI. We employed the Particle-In-Cell method for studying the transport/deposition and the agglomeration and deagglomeration for DPI carrier and API particles in the present work. The proposed development will leverage CFD-PIC and sensitivity analysis capabilities from the Department of Energy laboratories: Multiphase Flow Interface Flow Exchange and Dakota UQ software. A data-driven framework is used to obtain the reliable low order statics of the particle's residence time in the inhaler. The framework is further used to study the effect of drug particle density, carrier particle density and size, fluidizing agent density and velocity, and some numerical parameters on the particles' residence time in the inhaler.
133

Computational methods for random differential equations: probability density function and estimation of the parameters

Calatayud Gregori, Julia 05 March 2020 (has links)
[EN] Mathematical models based on deterministic differential equations do not take into account the inherent uncertainty of the physical phenomenon (in a wide sense) under study. In addition, inaccuracies in the collected data often arise due to errors in the measurements. It thus becomes necessary to treat the input parameters of the model as random quantities, in the form of random variables or stochastic processes. This gives rise to the study of random ordinary and partial differential equations. The computation of the probability density function of the stochastic solution is important for uncertainty quantification of the model output. Although such computation is a difficult objective in general, certain stochastic expansions for the model coefficients allow faithful representations for the stochastic solution, which permits approximating its density function. In this regard, Karhunen-Loève and generalized polynomial chaos expansions become powerful tools for the density approximation. Also, methods based on discretizations from finite difference numerical schemes permit approximating the stochastic solution, therefore its probability density function. The main part of this dissertation aims at approximating the probability density function of important mathematical models with uncertainties in their formulation. Specifically, in this thesis we study, in the stochastic sense, the following models that arise in different scientific areas: in Physics, the model for the damped pendulum; in Biology and Epidemiology, the models for logistic growth and Bertalanffy, as well as epidemiological models; and in Thermodynamics, the heat partial differential equation. We rely on Karhunen-Loève and generalized polynomial chaos expansions and on finite difference schemes for the density approximation of the solution. These techniques are only applicable when we have a forward model in which the input parameters have certain probability distributions already set. When the model coefficients are estimated from collected data, we have an inverse problem. The Bayesian inference approach allows estimating the probability distribution of the model parameters from their prior probability distribution and the likelihood of the data. Uncertainty quantification for the model output is then carried out using the posterior predictive distribution. In this regard, the last part of the thesis shows the estimation of the distributions of the model parameters from experimental data on bacteria growth. To do so, a hybrid method that combines Bayesian parameter estimation and generalized polynomial chaos expansions is used. / [ES] Los modelos matemáticos basados en ecuaciones diferenciales deterministas no tienen en cuenta la incertidumbre inherente del fenómeno físico (en un sentido amplio) bajo estudio. Además, a menudo se producen inexactitudes en los datos recopilados debido a errores en las mediciones. Por lo tanto, es necesario tratar los parámetros de entrada del modelo como cantidades aleatorias, en forma de variables aleatorias o procesos estocásticos. Esto da lugar al estudio de las ecuaciones diferenciales aleatorias. El cálculo de la función de densidad de probabilidad de la solución estocástica es importante en la cuantificación de la incertidumbre de la respuesta del modelo. Aunque dicho cálculo es un objetivo difícil en general, ciertas expansiones estocásticas para los coeficientes del modelo dan lugar a representaciones fieles de la solución estocástica, lo que permite aproximar su función de densidad. En este sentido, las expansiones de Karhunen-Loève y de caos polinomial generalizado constituyen herramientas para dicha aproximación de la densidad. Además, los métodos basados en discretizaciones de esquemas numéricos de diferencias finitas permiten aproximar la solución estocástica, por lo tanto, su función de densidad de probabilidad. La parte principal de esta disertación tiene como objetivo aproximar la función de densidad de probabilidad de modelos matemáticos importantes con incertidumbre en su formulación. Concretamente, en esta memoria se estudian, en un sentido estocástico, los siguientes modelos que aparecen en diferentes áreas científicas: en Física, el modelo del péndulo amortiguado; en Biología y Epidemiología, los modelos de crecimiento logístico y de Bertalanffy, así como modelos de tipo epidemiológico; y en Termodinámica, la ecuación en derivadas parciales del calor. Utilizamos expansiones de Karhunen-Loève y de caos polinomial generalizado y esquemas de diferencias finitas para la aproximación de la densidad de la solución. Estas técnicas solo son aplicables cuando tenemos un modelo directo en el que los parámetros de entrada ya tienen determinadas distribuciones de probabilidad establecidas. Cuando los coeficientes del modelo se estiman a partir de los datos recopilados, tenemos un problema inverso. El enfoque de inferencia Bayesiana permite estimar la distribución de probabilidad de los parámetros del modelo a partir de su distribución de probabilidad previa y la verosimilitud de los datos. La cuantificación de la incertidumbre para la respuesta del modelo se lleva a cabo utilizando la distribución predictiva a posteriori. En este sentido, la última parte de la tesis muestra la estimación de las distribuciones de los parámetros del modelo a partir de datos experimentales sobre el crecimiento de bacterias. Para hacerlo, se utiliza un método híbrido que combina la estimación de parámetros Bayesianos y los desarrollos de caos polinomial generalizado. / [CA] Els models matemàtics basats en equacions diferencials deterministes no tenen en compte la incertesa inherent al fenomen físic (en un sentit ampli) sota estudi. A més a més, sovint es produeixen inexactituds en les dades recollides a causa d'errors de mesurament. Es fa així necessari tractar els paràmetres d'entrada del model com a quantitats aleatòries, en forma de variables aleatòries o processos estocàstics. Açò dóna lloc a l'estudi de les equacions diferencials aleatòries. El càlcul de la funció de densitat de probabilitat de la solució estocàstica és important per a quantificar la incertesa de la sortida del model. Tot i que, en general, aquest càlcul és un objectiu difícil d'assolir, certes expansions estocàstiques dels coeficients del model donen lloc a representacions fidels de la solució estocàstica, el que permet aproximar la seua funció de densitat. En aquest sentit, les expansions de Karhunen-Loève i de caos polinomial generalitzat esdevenen eines per a l'esmentada aproximació de la densitat. A més a més, els mètodes basats en discretitzacions mitjançant esquemes numèrics de diferències finites permeten aproximar la solució estocàstica, per tant la seua funció de densitat de probabilitat. La part principal d'aquesta dissertació té com a objectiu aproximar la funció de densitat de probabilitat d'importants models matemàtics amb incerteses en la seua formulació. Concretament, en aquesta memòria s'estudien, en un sentit estocàstic, els següents models que apareixen en diferents àrees científiques: en Física, el model del pèndol amortit; en Biologia i Epidemiologia, els models de creixement logístic i de Bertalanffy, així com models de tipus epidemiològic; i en Termodinàmica, l'equació en derivades parcials de la calor. Per a l'aproximació de la densitat de la solució, ens basem en expansions de Karhunen-Loève i de caos polinomial generalitzat i en esquemes de diferències finites. Aquestes tècniques només són aplicables quan tenim un model cap avant en què els paràmetres d'entrada tenen ja determinades distribucions de probabilitat. Quan els coeficients del model s'estimen a partir de les dades recollides, tenim un problema invers. L'enfocament de la inferència Bayesiana permet estimar la distribució de probabilitat dels paràmetres del model a partir de la seua distribució de probabilitat prèvia i la versemblança de les dades. La quantificació de la incertesa per a la resposta del model es fa mitjançant la distribució predictiva a posteriori. En aquest sentit, l'última part de la tesi mostra l'estimació de les distribucions dels paràmetres del model a partir de dades experimentals sobre el creixement de bacteris. Per a fer-ho, s'utilitza un mètode híbrid que combina l'estimació de paràmetres Bayesiana i els desenvolupaments de caos polinomial generalitzat. / This work has been supported by the Spanish Ministerio de Economía y Competitividad grant MTM2017–89664–P. / Calatayud Gregori, J. (2020). Computational methods for random differential equations: probability density function and estimation of the parameters [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/138396 / TESIS / Premios Extraordinarios de tesis doctorales
134

Uncertainty quantification and calibration of a photovoltaic plant model : warranty of performance and robust estimation of the long-term production. / Quantification des incertitudes et calage d'un modèle de centrale photovoltaïque : garantie de performance et estimation robuste de la production long-terme

Carmassi, Mathieu 21 December 2018 (has links)
Les difficultés de mise en œuvre d'expériences de terrain ou de laboratoire, ainsi que les coûts associés, conduisent les sociétés industrielles à se tourner vers des codes numériques de calcul. Ces codes, censés être représentatifs des phénomènes physiques en jeu, entraînent néanmoins tout un cortège de problèmes. Le premier de ces problèmes provient de la volonté de prédire la réalité à partir d'un modèle informatique. En effet, le code doit être représentatif du phénomène et, par conséquent, être capable de simuler des données proches de la réalité. Or, malgré le constant développement du réalisme de ces codes, des erreurs de prédiction subsistent. Elles sont de deux natures différentes. La première provient de la différence entre le phénomène physique et les valeurs relevées expérimentalement. La deuxième concerne l'écart entre le code développé et le phénomène physique. Pour diminuer cet écart, souvent qualifié de biais ou d'erreur de modèle, les développeurs complexifient en général les codes, les rendant très chronophages dans certains cas. De plus, le code dépend de paramètres à fixer par l'utilisateur qui doivent être choisis pour correspondre au mieux aux données de terrain. L'estimation de ces paramètres propres au code s'appelle le calage. Cette thèse propose dans un premier temps une revue des méthodes statistiques nécessaires à la compréhension du calage Bayésien. Ensuite, une revue des principales méthodes de calage est présentée accompagnée d'un exemple comparatif basé sur un code de calcul servant à prédire la puissance d'une centrale photovoltaïque. Le package appelé CaliCo qui permet de réaliser un calage rapide de beaucoup de codes numériques est alors présenté. Enfin, un cas d'étude réel d'une grande centrale photovoltaïque sera introduit et le calage réalisé pour effectuer un suivi de performance de la centrale. Ce cas de code industriel particulier introduit des spécificités de calage numériques qui seront abordées et deux modèles statistiques y seront exposés. / Field experiments are often difficult and expensive to make. To bypass these issues, industrial companies have developed computational codes. These codes intend to be representative of the physical system, but come with a certain amount of problems. The code intends to be as close as possible to the physical system. It turns out that, despite continuous code development, the difference between the code outputs and experiments can remain significant. Two kinds of uncertainties are observed. The first one comes from the difference between the physical phenomenon and the values recorded experimentally. The second concerns the gap between the code and the physical system. To reduce this difference, often named model bias, discrepancy, or model error, computer codes are generally complexified in order to make them more realistic. These improvements lead to time consuming codes. Moreover, a code often depends on parameters to be set by the user to make the code as close as possible to field data. This estimation task is called calibration. This thesis first proposes a review of the statistical methods necessary to understand Bayesian calibration. Then, a review of the main calibration methods is presented with a comparative example based on a numerical code used to predict the power of a photovoltaic plant. The package called CaliCo which allows to quickly perform a Bayesian calibration on a lot of numerical codes is then presented. Finally, a real case study of a large photovoltaic power plant will be introduced and the calibration carried out as part of a performance monitoring framework. This particular case of industrial code introduces numerical calibration specificities that will be discussed with two statistical models.
135

Modeling Nonstationarity Using Locally Stationary Basis Processes

Ganguly, Shreyan 03 October 2019 (has links)
No description available.
136

Uncertainty Quantification and Propagation in Materials Modeling Using a Bayesian Inferential Framework

Ricciardi, Denielle E. 13 November 2020 (has links)
No description available.
137

Improving hydrological post-processing for assessing the conditional predictive uncertainty of monthly streamflows

Romero Cuellar, Jonathan 07 January 2020 (has links)
[ES] La cuantificación de la incertidumbre predictiva es de vital importancia para producir predicciones hidrológicas confiables que soporten y apoyen la toma de decisiones en el marco de la gestión de los recursos hídricos. Los post-procesadores hidrológicos son herramientas adecuadas para estimar la incertidumbre predictiva de las predicciones hidrológicas (salidas del modelo hidrológico). El objetivo general de esta tesis es mejorar los métodos de post-procesamiento hidrológico para estimar la incertidumbre predictiva de caudales mensuales. Esta tesis pretende resolver dos problemas del post-procesamiento hidrológico: i) la heterocedasticidad y ii) la función de verosimilitud intratable. Los objetivos específicos de esta tesis son tres. Primero y relacionado con la heterocedasticidad, se propone y evalúa un nuevo método de post-procesamiento llamado GMM post-processor que consiste en la combinación del esquema de modelado de probabilidad Bayesiana conjunta y la mezcla de Gaussianas múltiples. Además, se comparó el desempeño del post-procesador propuesto con otros métodos tradicionales y bien aceptados en caudales mensuales a través de las doce cuencas hidrográficas del proyecto MOPEX. A partir de este objetivo (capitulo 2), encontramos que GMM post-processor es el mejor para estimar la incertidumbre predictiva de caudales mensuales, especialmente en cuencas de clima seco. Segundo, se propone un método para cuantificar la incertidumbre predictiva en el contexto de post-procesamiento hidrológico cuando sea difícil calcular la función de verosimilitud (función de verosimilitud intratable). Algunas veces en modelamiento hidrológico es difícil calcular la función de verosimilitud, por ejemplo, cuando se trabaja con modelos complejos o en escenarios de escasa información como en cuencas no aforadas. Por lo tanto, se propone el ABC post-processor que intercambia la estimación de la función de verosimilitud por el uso de resúmenes estadísticos y datos simulados. De este objetivo específico (capitulo 3), se demuestra que la distribución predictiva estimada por un método exacto (MCMC post-processor) o por un método aproximado (ABC post-processor) es similar. Este resultado es importante porque trabajar con escasa información es una característica común en los estudios hidrológicos. Finalmente, se aplica el ABC post-processor para estimar la incertidumbre de los estadísticos de los caudales obtenidos desde las proyecciones de cambio climático, como un caso particular de un problema de función de verosimilitud intratable. De este objetivo específico (capitulo 4), encontramos que el ABC post-processor ofrece proyecciones de cambio climático más confiables que los 14 modelos climáticos (sin post-procesamiento). De igual forma, ABC post-processor produce bandas de incertidumbre más realista para los estadísticos de los caudales que el método clásico de múltiples conjuntos (ensamble). / [CA] La quantificació de la incertesa predictiva és de vital importància per a produir prediccions hidrològiques confiables que suporten i recolzen la presa de decisions en el marc de la gestió dels recursos hídrics. Els post-processadors hidrològics són eines adequades per a estimar la incertesa predictiva de les prediccions hidrològiques (eixides del model hidrològic). L'objectiu general d'aquesta tesi és millorar els mètodes de post-processament hidrològic per a estimar la incertesa predictiva de cabals mensuals. Els objectius específics d'aquesta tesi són tres. Primer, es proposa i avalua un nou mètode de post-processament anomenat GMM post-processor que consisteix en la combinació de l'esquema de modelatge de probabilitat Bayesiana conjunta i la barreja de Gaussianes múltiples. A més, es compara l'acompliment del post-processador proposat amb altres mètodes tradicionals i ben acceptats en cabals mensuals a través de les dotze conques hidrogràfiques del projecte MOPEX. A partir d'aquest objectiu (capítol 2), trobem que GMM post-processor és el millor per a estimar la incertesa predictiva de cabals mensuals, especialment en conques de clima sec. En segon lloc, es proposa un mètode per a quantificar la incertesa predictiva en el context de post-processament hidrològic quan siga difícil calcular la funció de versemblança (funció de versemblança intractable). Algunes vegades en modelació hidrològica és difícil calcular la funció de versemblança, per exemple, quan es treballa amb models complexos o amb escenaris d'escassa informació com a conques no aforades. Per tant, es proposa l'ABC post-processor que intercanvia l'estimació de la funció de versemblança per l'ús de resums estadístics i dades simulades. D'aquest objectiu específic (capítol 3), es demostra que la distribució predictiva estimada per un mètode exacte (MCMC post-processor) o per un mètode aproximat (ABC post-processor) és similar. Aquest resultat és important perquè treballar amb escassa informació és una característica comuna als estudis hidrològics. Finalment, s'aplica l'ABC post-processor per a estimar la incertesa dels estadístics dels cabals obtinguts des de les projeccions de canvi climàtic. D'aquest objectiu específic (capítol 4), trobem que l'ABC post-processor ofereix projeccions de canvi climàtic més confiables que els 14 models climàtics (sense post-processament). D'igual forma, ABC post-processor produeix bandes d'incertesa més realistes per als estadístics dels cabals que el mètode clàssic d'assemble. / [EN] The predictive uncertainty quantification in monthly streamflows is crucial to make reliable hydrological predictions that help and support decision-making in water resources management. Hydrological post-processing methods are suitable tools to estimate the predictive uncertainty of deterministic streamflow predictions (hydrological model outputs). In general, this thesis focuses on improving hydrological post-processing methods for assessing the conditional predictive uncertainty of monthly streamflows. This thesis deal with two issues of the hydrological post-processing scheme i) the heteroscedasticity problem and ii) the intractable likelihood problem. Mainly, this thesis includes three specific aims. First and relate to the heteroscedasticity problem, we develop and evaluate a new post-processing approach, called GMM post-processor, which is based on the Bayesian joint probability modelling approach and the Gaussian mixture models. Besides, we compare the performance of the proposed post-processor with the well-known exiting post-processors for monthly streamflows across 12 MOPEX catchments. From this aim (chapter 2), we find that the GMM post-processor is the best suited for estimating the conditional predictive uncertainty of monthly streamflows, especially for dry catchments. Secondly, we introduce a method to quantify the conditional predictive uncertainty in hydrological post-processing contexts when it is cumbersome to calculate the likelihood (intractable likelihood). Sometimes, it can be challenging to estimate the likelihood itself in hydrological modelling, especially working with complex models or with ungauged catchments. Therefore, we propose the ABC post-processor that exchanges the requirement of calculating the likelihood function by the use of some sufficient summary statistics and synthetic datasets. With this aim in mind (chapter 3), we prove that the conditional predictive distribution is similarly produced by the exact predictive (MCMC post-processor) or the approximate predictive (ABC post-processor), qualitatively speaking. This finding is significant because dealing with scarce information is a common condition in hydrological studies. Finally, we apply the ABC post-processing method to estimate the uncertainty of streamflow statistics obtained from climate change projections, such as a particular case of intractable likelihood problem. From this specific objective (chapter 4), we find that the ABC post-processor approach: 1) offers more reliable projections than 14 climate models (without post-processing); 2) concerning the best climate models during the baseline period, produces more realistic uncertainty bands than the classical multi-model ensemble approach. / I would like to thank the Gobernación del Huila Scholarship Program No. 677 (Colombia) for providing the financial support for my PhD research. / Romero Cuellar, J. (2019). Improving hydrological post-processing for assessing the conditional predictive uncertainty of monthly streamflows [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/133999 / TESIS
138

Quantifying Uncertainty in Flood Modeling Using Bayesian Approaches

Tao Huang (15353755) 27 April 2023 (has links)
<p>  </p> <p>Floods all over the world are one of the most common and devastating natural disasters for human society, and the flood risk is increasing recently due to more and more extreme climatic events. In the United States, one of the key resources that provide the flood risk information to the public is the Flood Insurance Rate Map (FIRM) administrated by the Federal Emergency Management Agency (FEMA) and the digitalized FIRMs have covered over 90% of the United States population so far. However, the uncertainty in the modeling process of FIRMs is rarely investigated. In this study, we use two of the widely used multi-model methods, the Bayesian Model Averaging (BMA) and the generalized likelihood uncertainty estimation (GLUE), to evaluate and reduce the impacts of various uncertainties with respect to modeling settings, evaluation metrics, and algorithm parameters on the flood modeling of FIRMs. Accordingly, three objectives of this study are to: (1) quantify the uncertainty in FEMA FIRMs by using BMA and Hierarchical BMA approaches; (2) investigate the inherent limitations and uncertainty in existing evaluation metrics of flood models; and (3) estimate the BMA parameters (weights and variances) using the Metropolis-Hastings (M-H) algorithm with multiple Markov Chains Monte Carlo (MCMC).</p> <p><br></p> <p>In the first objective, both the BMA and hierarchical BMA (HBMA) approaches are employed to quantify the uncertainty within the detailed FEMA models of the Deep River and the Saint Marys River in the State of Indiana based on water stage predictions from 150 HEC-RAS 1D unsteady flow model configurations that incorporate four uncertainty sources including bridges, channel roughness, floodplain roughness, and upstream flow input. Given the ensemble predictions and the observed water stage data in the training period, the BMA weight and the variance for each model member are obtained, and then the BMA prediction ability is validated for the observed data from the later period. The results indicate that the BMA prediction is more robust than both the original FEMA model and the ensemble mean. Furthermore, the HBMA framework explicitly shows the propagation of various uncertainty sources, and both the channel roughness and the upstream flow input have a larger impact on prediction variance than bridges. Hence, it provides insights for modelers into the relative impact of individual uncertainty sources in the flood modeling process. The results show that the probabilistic flood maps developed based on the BMA analysis could provide more reliable predictions than the deterministic FIRMs.</p> <p><br></p> <p>In the second objective, the inherent limitations and sampling uncertainty in several commonly used model evaluation metrics, namely, the Nash Sutcliffe efficiency (<em>NSE</em>), the Kling Gupta efficiency (<em>KGE</em>), and the coefficient of determination (<em>R</em>2), are investigated systematically, and hence the overall performance of flood models can be evaluated in a comprehensive way. These evaluation metrics are then applied to the 1D HEC-RAS models of six reaches located in the states of Indiana and Texas of the United States to quantify the uncertainty associated with the channel roughness and upstream flow input. The results show that the model performances based on the uniform and normal priors are comparable. The distributions of these evaluation metrics are significantly different for the flood model under different high-flow scenarios, and it further indicates that the metrics should be treated as random statistical variables given both aleatory and epistemic uncertainties in the modeling process. Additionally, the white-noise error in observations has the least impact on the evaluation metrics.</p> <p><br></p> <p>In the third objective, the Metropolis-Hastings (M-H) algorithm, which is one of the most widely used algorithms in the MCMC method, is proposed to estimate the BMA parameters (weights and variances), since the reliability of BMA parameters determines the accuracy of BMA predictions. However, the uncertainty in the BMA parameters with fixed values, which are usually obtained from the Expectation-Maximization (EM) algorithm, has not been adequately investigated in BMA-related applications over the past few decades. Both numerical experiments and two practical 1D HEC-RAS models in the states of Indiana and Texas of the United States are employed to examine the applicability of the M-H algorithm with multiple independent Markov chains. The results show that the BMA weights estimated from both algorithms are comparable, while the BMA variances obtained from the M-H MCMC algorithm are closer to the given variances in the numerical experiment. Overall, the MCMC approach with multiple chains can provide more information associated with the uncertainty of BMA parameters and its performance of water stage predictions is better than the default EM algorithm in terms of multiple evaluation metrics as well as algorithm flexibility.</p>
139

DATA ANALYSIS AND UNCERTAINTY QUANTIFICATION OF ROOF PRESSURE MEASUREMENTS USING THE NIST AERODYNAMIC DATABASE

Shelley, Erick R. 08 July 2022 (has links)
No description available.
140

Bringing Newton and Bernoulli Into the Quantum World: Applying Classical Physics to the Modeling of Quantum Behavior in Transition Metal Alloys

Weiss, Elan J. January 2022 (has links)
No description available.

Page generated in 0.1506 seconds