• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 393
  • 188
  • 158
  • 50
  • 30
  • 21
  • 11
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 1034
  • 136
  • 122
  • 114
  • 90
  • 85
  • 73
  • 71
  • 71
  • 64
  • 63
  • 61
  • 60
  • 58
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Investigation of Inertial Navigation for Localization in Underground Mines

Svensson, John January 2015 (has links)
This thesis project considers the potential use of inertial navigation on a consumer grade tablet mounted in a vehicle in an underground mine. The goal is to identify which sensors and techniques are useful and to design a navigation algorithm based on those results. The navigation algorithm is intended to work alongside the current received signal strength indication (RSSI) positioning system. Testing of the gyroscope, accelerometer and magnetometer sensors suggest that, while dead reckoning is likely not precise enough, an orientation filter can be designed that can be used for navigation. A complementary orientation filter using the gyroscope and accelerometer is then designed that shows better results than the default sensor fusion solutions available in Android. The filter is expandable and can come to include magnetometer data in the future. Based on the outputs of this filter, a navigation algorithm based onangle matching with map information is proposed. Precise positioning in an underground mine can be crucial to employee safety, and may also bring production benefits.
362

Groundwater inflow into rock tunnels

Chen, Ran 09 November 2010 (has links)
Prediction of groundwater inflow into rock tunnels is one of the essential tasks of tunnel engineering. Currently, most of the methods used in the industry are typically based on continuum models, whether analytical, semi-empirical, or numerical. As a consequence, a regular flow along the tunnel is commonly predicted. There are also some discrete fracture network methods based on a discontinous model, which typically yield regular flow or random flow along the tunnel. However, it was observed that, in hard rock tunnels, flow usually concentrates in some areas, and much of the tunnel is dry. The reason is that, in hard rock, most of the water flows in rock fractures and fractures typically occur in a clustered pattern rather than in a regular or random pattern. A new method is developed in this work, which can model the fracture clustering and reproduce the flow concentration. After elaborate literature review, a new algorithm is developed to simulate fractures with clustering properties by using geostatistics. Then, a discrete fracture network is built and simplified. In order to solve the flow problem in the discrete fracture network, an existing analytical-numercial method is improved. Two case studies illustrate the procedure of fracture simulation. Several ideal tunnel cases and one real tunnel project are used to validate the flow analysis. It is found that fracture clustering can be modeled and flow concentration can be reproduced by using the proposed technique. / text
363

Risk analysis in tunneling with imprecise probabilities

You, Xiaomin 09 November 2010 (has links)
Due to the inherent uncertainties in ground and groundwater conditions, tunnel projects often have to face potential risks of cost overrun or schedule delay. Risk analysis has become a required tool (by insurers, Federal Transit Administration, etc.) to identify and quantify risk, as well as visualize causes and effects, and the course (chain) of events. Various efforts have been made to risk assessment and analysis by using conventional methodologies with precise probabilities. However, because of limited information or experience in similar tunnel projects, available evidence in risk assessment and analysis usually relies on judgments from experienced engineers and experts. As a result, imprecision is involved in probability evaluations. The intention of this study is to explore the use of the theory of imprecise probability as applied to risk analysis in tunneling. The goal of the methodologies proposed in this study is to deal with imprecise information without forcing the experts to commit to assessments that they do not feel comfortable with or the analyst to pick a single distribution when the available data does not warrant such precision. After a brief introduction to the theory of imprecise probability, different types of interaction between variables are studied, including unknown interaction, different types of independence, and correlated variables. Various algorithms aiming at achieving upper and lower bounds on previsions and conditional probabilities with assumed interaction type are proposed. Then, methodologies have been developed for risk registers, event trees, fault trees, and decision trees, i.e. the standard tools in risk assessment for underground projects. Corresponding algorithms are developed and illustrated by examples. Finally, several case histories of risk analysis in tunneling are revisited by using the methodologies developed in this study. All results obtained based on imprecise probabilities are compared with the results from precise probabilities. / text
364

Production and subsurface vertical transport of radioxenon resulting from underground nuclear explosions

Lowrey, Justin David 16 February 2011 (has links)
Atmospheric monitoring of radionuclides as part of the International Monitoring System requires the capability to differentiate between a radionuclide signature emanating from peaceful nuclear activity and one emanating from a well-contained underground nuclear explosion. While the radionuclide signatures of nuclear weapons are generally well known, radionuclides must first pass through hundreds of meters of earth to reach the surface where they can be detected and analyzed. Less well known is the affect that subsurface vertical transport has on the isotopic signatures of nuclear explosions. In this work, a model is developed, and tested, simulating the detonation of a simple underground nuclear explosion and the subsequent vertical transport of resulting radioxenon to the surface. First, the fast-fission burn of a fissile spherical core surrounded by a layer of geologic media is modeled, normalized to 1 kton total energy. The resulting source term is then used in the testing and evaluation of the constructed vertical transport model, which is based on the double-porosity model of underground fluid transport driven by barometric pumping. First, the ability of the vertical transport code to effectively model the underground pressure response from a varying surface pressure is demonstrated. Next, a 100-day simulation of the vertical migration of a static source is examined, and the resulting cumulative outflow of roughly 1% initial inventory outflow per cycle is found to closely follow the analytical predictions. Finally, calculated radioxenon source terms are utilized to model the resulting vertical transport and subsequent surface outflow. These results are found to be consistent with the physical expectations of the system, and lastly a cursory sensitivity analysis is conducted on several of the physical parameters of the model. The result is that the vertical transport model predicts isotopic fractionation of radioxenon that can potentially lie outside of currently accepted standard bounds. / text
365

The alternative press and its readers : producers' perceptions of their readers and the readership survey of the Texas Observer

Min, InCheol 16 May 2011 (has links)
Not available / text
366

An under-ground SEN-station

連家欣, Lin, Ka-yun, Grace. January 1995 (has links)
published_or_final_version / Architecture / Master / Master of Architecture
367

Field analysis in power supply lines by integral equation method

Foo, Pik-yue, 傅必雨 January 1974 (has links)
(Uncorrected OCR) Abstract of thesis entitled liField analysis in power supply lines by integraJ. equation methodll subm1 tted by FOe, PIK YlJE for the degree of Ph.D at the University of Hong Kong in December, 1974. Abstract In this thesis, the integral equation (I.E.) method has been employed successfully to solve field problems in power supply lines. Though the I.E. method is mathematically quite involved, it is shown that it is possible to treat the integral equation as a system of linear equations. Hence the transformed simultaneous linear equations can be considered as the starting point for solving problems either in overhead lines or \Ulderground power cables. In overhead lines, especially in Extra-High-Voltage and Ultra- High-Voltage systems, an evaluation of the electric field near each conductor, especially the maximum electric field, is essential as corona and radio interference become important considerations in the design of such lines. The I.E. method has many advantages over the other existing methods in calculating the potential gradient at the surface of the overhead lines in that it yieldS reasonably accurate results with comparatively simple numerical computations. The difference between the present method and the existing methods is the basic assumption. In the I.E. method, subconductor surfaces are treated as equipotential lines whereas in other existing methods, the subconductor surfaces usually do not coincide with the simulated equipotential lines. The method can also be applied equally well to symmetrical or asymmetrical bundle conductors with or without ground wires. Other parameters such as capacitances, potential gradients at the earth surface etc. are also included in the computer program. In underground cable systems, the I. E. method proves to be very effective in tackling the thermal field problem, especially when the cables are buried shallow and thus the earth i s surface can no longer be treated as isothermal. .It has been found that the thermal resistance (external) obtained wi::;h a non-isothermal earth surface is considerably higher than that obtained under the assuumption of an isothermal earth surface. With non.-isothermal earth surface, the temperature difference on the earth surface between the spot vertically above the cable and the spot at a distance eClual to twice the depth of burial of the cable away could be as high as lOoe. The finite-difference or fini te-搪lement method could likewise be used to solve the problem of a non-isothermal ea>:>th surface, but the computer storage re'luired and the execution time would be much more than that using the I.E. method. / abstract / toc / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
368

Analysis of development potential of underground development in urban areas

Cheung, Ping-kuen, Peter, 張秉權 January 1997 (has links)
published_or_final_version / Urban Design / Master / Master of Urban Design
369

Finite element analysis of soil-structure interaction problems, with application to basement construction problems

Cheng, Yung-ming., 鄭榕明. January 1989 (has links)
published_or_final_version / Civil Engineering / Master / Master of Philosophy
370

COMPREHENSIVE UTILIZATION OF GEOTHERMAL AND SOLAR ENERGY TO EXPLOIT GAS HYDRATES BURIED IN OCEANIC SEDIMENTS

Ning, Fulong, Jiang, Guosheng, Zhang, Ling 07 1900 (has links)
How to exploit and make use of natural gas hydrates in oceans will weigh much in the future researches. Unlike the oil or gas reservoirs, the distributions of natural gas hydrate are very complicated and don’t congregate massively in oceanic sediments. Besides, factors such as seafloor geohazards and climate must be taken into account, which makes it much more difficult and complicated to exploit oceanic gas hydrates than conventional oil or gas. Nowadays neither of such methods as thermal stimulation, depressurization, inhibitor injection, carbon dioxide replacement and mixing exploitation etc. is applied to exploit gas hydrates in marine sediments because of their disadvantages. This paper introduces a conception of combining solar and geothermal energy for gas hydrates exploitation. The model mainly includes five parts: solar energy transferring module, sea water circulating module, underground boiler module, platform and gas-liquid separating module. Solar cells and electric heaters are used to heat the formations containing hydrates. Because they become relatively more mature and cheaper, it’s the key of how to utilize the geothermy to exchange heat in developing this conception, which needs solution of fluid leakage, circulating passages and heat-exchange interface problems in building underground boiler. Probably it’s a feasible measure to use an effective hydraulic control system and hydraulic fracturing. The idea should be a good choice to exploit marine gas hydrates by combining solar and geothermal energy since this method has a great advantage either in terms of efficiency or cost.

Page generated in 0.0542 seconds