• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of mesoscale variability of water masses on acoustic wave propagation in a shallow sea

Chen, Feng January 2015 (has links)
Anthropogenic noise in the sea is now classed as a pollutant alongside chemical pollution and marine litter in accordance with the Marine Strategy Framework Directive. Noise from shipping is a major contributor to the ambient noise levels in the ocean, particularly at low (<300Hz) frequencies. The properties of sound propagation in shallow waters are highly influenced by the marine physical environment. Ocean modelling plays an important role in underwater noise studies since it can provide high resolution water column parameters over large geographic areas. This study investigates the noise patterns and their temporal variations in the Celtic Sea by using a coupled ocean model (POLCOMS) and an acoustic model (HARCAM). A method to predict noise exposure experienced by marine animals is then developed, following an application for diving seals. The ocean model is applied in the Celtic Sea to provide high-resolution 3D hourly temperature and salinity fields for the acoustic model. The model is validated against in-situ and satellite observations, giving high skills to simulate the water column structures. Sensitivity studies of modelled results to different atmospheric forcing are carried out in order to improve the accuracy of the model. The results show that the modelled sea surface temperature, stratification and water column structures are highly sensitive to the choice of surface forcing, especially in the summer time. The increase in resolution of surface forcing does not necessarily lead to more accurate results. The tidally frontal position is, however, insensitive to the forcing. The variability of noise propagation is studied using the coupled model, demonstrating high dependence on oceanographic conditions, geographic location of sound source and its depth. In summer, when the source of sound is on the inshore side of the bottom front, the sound energy is mostly concentrated in the near-bottom layer. In winter, the sound from the same source is distributed more evenly in the vertical. When the source is on the seaward side of the front, the sound level from a shallow source is nearly uniform in the vertical and the transmission loss is significantly greater (~16dB at 40km distance) in summer than in winter. In contrast, sound energy from a deep source is trapped in the bottom cold water, leading to a much lower transmission loss (~20dB) in summer than in winter. Note that ~10dB fluctuation of sound energy is found during the deterioration of the thermocline in late autumn. Shallow sources (e.g. ships) are sensitive to the surface heat flux as it changes significantly the vertical temperature gradient, while tides play an important role in determining the TL variability of deeper sources (e.g. pile driving) since they cause adjustments of positions of subsurface fronts. The seasonal noise patterns radiated by a large cargo ship are modelled by relating the AIS ship track data and the coupled model, showing a clear influence of the seasonal thermocline and associated bottom fronts on shipping noise distribution. The noise propagates much further (tens of kilometres) in winter than in summer. The predicted shipping noise exposure perceived by grey seals shows strong step changes in the sound level during their descent/ascent through the water column. Since grey seals tend to be benthic foragers, a hypothesis that the step change in sound exposure may have negative impacts on their foraging behaviour is proposed for biological specialists.
2

Using a Geospatial Approach to Evaluate the Impacts of Shipping Activity on Marine Mammals and Fish in Arctic Canada

Joyce, Jenna 14 June 2018 (has links)
A loss in sea ice cover, primarily attributed to climate change, is increasing the accessibility and navigability of the Arctic Ocean. This increased accessibility of the Canadian Arctic, and in particular the Northwest Passage, presents important global and national shipping and development opportunities. However, increased shipping in the region also present challenges related to the environmental sustainability, sovereignty and safety, and cultural sustainability. The Low Impact Shipping Corridors (the Corridors) is currently the foundational framework for governing ship traffic within the Canadian Arctic. However, the Corridors were largely established based on historic traffic patterns and thus they do not fully consider important areas for marine mammals and fish in the region. This research addresses this important research gap by spatially identifying important areas for marine mammals and fish in the Kitikmeot region of Nunavut using both Traditional Knowledge and western science, evaluating ship tracks from 1990-2015, and geospatially identifying and evaluating areas of potential disturbance for marine mammals and fish related to vessel noise from different ship types transiting the Corridors within the study region. The results of this study indicate that all vessel types have the potential to cause behavioural disturbance to marine mammals and fish when navigating through these important wildlife areas, and that louder vessels (i.e. Tanker ships) travelling outside of these important wildlife areas have a greater potential to cause behavioural disturbance to marine mammals and fish than quieter vessels (i.e. Pleasure Crafts). The results also indicate that vessels navigating through certain regions of the Kitikmeot have a higher potential to cause behavioural disturbances in these species, including through the Gulf of Boothia, Franklin Strait, Rae Strait, Rasmussen Basin, and Bathurst Inlet.
3

Measuring underwater noise exposure from shipping

Merchant, Nathan January 2014 (has links)
Levels of underwater noise in the open ocean have been increasing since at least the 1960s due to growth in global shipping traffic and the speed and propulsion power of vessels. This rise in noise levels reduces the range over which vocal marine species can communicate, and can induce physiological stress and behavioural responses, which may ultimately have population-level consequences. Although long-term noise trends have been studied at some open-ocean sites, in shallower coastal regions the high spatiotemporal variability of noise levels presents a substantial methodological challenge, and trends in these areas are poorly understood. This thesis addresses this challenge by introducing new techniques which combine multiple data sources for ship noise assessment in coastal waters. These data include Automatic Identification System (AIS) ship-tracking data, shore-based time-lapse footage, meteorological data, and tidal data. Two studies are presented: in the first, AIS data and acoustic recordings from Falmouth Bay in the western English Channel are combined using an adaptive threshold, which separates ship passages from background noise in the acoustic data. These passages are then cross-referenced with AIS vessel tracks, and the noise exposure associated with shipping activity is then determined. The second study, at a site in the Moray Firth, Scotland, expanded the method to include shore-based time-lapse footage, which enables visual corroboration of vessel identifications and the production of videos integrating the various data sources. Two further studies examine and enhance basic analysis techniques for ambient noise monitoring. The first study examines averaging metrics and their applicability to the assessment of noise from shipping. Long-term data from the VENUS observatory are empirically assessed for different averaging times and in the presence of outliers. It is concluded that the mean sound pressure level averaged in linear space is most appropriate, in terms of both standardization and relevance to impacts on marine fauna. In the second study, a new technique for the statistical analysis of long-term passive acoustic datasets, termed spectral probability density (SPD), is introduced. It is shown that the SPD can reveal characteristics such as multimodality, outlier influence, and persistent self-noise, which are not apparent using conventional techniques. This helps to interpret long-term datasets, and can indicate whether an instrument’s dynamic range is appropriate to field conditions. Taken together, the contributions presented in this thesis help to establish a stronger methodological basis for the assessment of shipping noise. These methods can help to inform emerging policy initiatives, efforts to standardise underwater noise measurements, and investigation into the effects of shipping noise on marine life.
4

Underwater radiated noise from Point Absorbing Wave Energy Converters : Noise Characteristics and Possible Environmental Effects

Haikonen, Kalle January 2014 (has links)
The conversion of wave energy into electrical energy has the potential to become a clean and sustainable form of renewable energy conversion. However, like all forms of energy conversion it will inevitably have an impact on the marine environment, although not in the form of emissions of hazardous substances (gases, oils or chemicals associated with anticorrosion). Possible environmental issues associated with wave energy conversion include electromagnetic fields, alteration of sedimentation and hydrologic regimes and underwater radiated noise. Underwater noise has the potential to propagate over long distances and thus have the potential to disturb marine organisms far away from the noise source. There is great variation in the ability to perceive sound between marine organisms, one sound that is clearly audible to one species can be completely inaudible to another. Thus, to be able to determine potential environmental impact from WECs associated with underwater noise, the noise radiated from the WECs must be known. This thesis presents results from studies on the underwater radiated noise from four different full-scale WECs in the Lysekil Wave Power Project. Hydrophones were used to measure the underwater radiated noise from operating point absorbing linear WECs. The main purpose was to study the radiated noise from the operating WECs with emphasis on characteristics such as spectrum levels, Sound Pressure Level (SPL), noise duration and repetition rate. This to be able to determine the origin of the noise and if possible, implement design changes to minimize radiated noise. The results identified two main operational noises (transients with the bulk of the energy in frequencies &lt;1 kHz). The SPL of the radiated noise fluctuated significantly, depending on wave height. Broadband SPLrms of the measurements ranged between ~110 dB and ~140 dB re 1 µPa and SPLpeak of specific noises ranges between ~140 and ~180 dB re µPa. Audibility was estimated range from 1km to 15 km depending critically on species and on assumptions of propagation loss. The noise is not expected to have any negative effects on behaviour or mask any signals, unless in the vicinity (&lt;150m) of the WECs in significant wave heights. No physical damage, even in close vicinity are expected on either fish or marine mammals. Having the aim to have as little impact on the environment a possible, these studies are important. This way precautions can be implemented early in the technical development of this kind of renewable energy converters. The benefits from the WECs the Lysekil wave power project are believed to outweigh possible environmental impacts due to underwater radiated noise. / <p>Vid avhandlingens tryckläggning upptäcktes inte att tidpunkt för disputation var fel.</p>
5

Analysis Of Multiply-Connected Acoustic Filters with Application To Design Of Combination Mufflers And Underwater Noise Control Linings

Panigrahi, Satyanarayan 09 1900 (has links)
This thesis endeavors towards developing various concepts employed in analysis and design of acoustic filters for varied applications ranging from combination mufflers for automobiles to complex networks of gas carrying ducts to multiply connected complex automotive silencing devices to the noise control coatings for underwater applications. A two-dimensional wave modeling approach has been proposed to evaluate sound attenuation characteristics of dissipative mufflers of finite length with/without extended inlet and outlet tubes including very large mufflers. The correctness of the method has been validated through comparison with experimental results from literature. Two other frequently used approximate schemes have been discussed briefly with reference to the available literature. These three approaches have then been weighed against each other to show the effectiveness and limitations of each one. A thorough comparison study has been performed to investigate each one’s extent of applicability. A parametric study with different parameters suggests some useful design guidelines that can be put to use while designing such mufflers. Benefits and drawbacks of reactive and dissipative mufflers have been discussed with an intention of striking a compromise between them to achieve a better transmission quality over a broad frequency range. This has been accomplished by combining these two types of mufflers/filters explicitly. These combination mufflers are analyzed using a transfer matrix based approach by extending the aforesaid concept of two-dimensional wave modeling for finite dissipative ducts. The present approach has been used to analyze axi-symmetric circular lined plenum chambers also. The effectiveness of the bulk reaction assumption to model absorptive lining is illustrated. A parametric study has been carried out to investigate the effects of different thicknesses and placements of the absorptive lining. The contributions of reflective and absorptive portion of the combination mufflerto overall attenuation performance have been investigated from the designer’s point of view A generalized algorithm has been developed for studying the plane sound wave propa- gation in a system of interconnected rigid-walled acoustic filter elements. Interconnection between various elements is represented by a connectivity matrix. Equations of volume velocity continuity and pressure equilibrium at the interconnections are generated using this connectivity matrix and are solved using the Gauss-Jordan elimination scheme to get the overall transfer matrix of the system. The algorithm used for generalized labeling of the network and computation of Transmission Loss has also been discussed. The algorithm has been applied to investigate a multiply connected automobile mufflers as a network of acoustic elements which guides the way to a specialized application discussed next. Results for some configurations have been compared with those from the FEM analysis and experiments. A parametric study with respect to some geometric variables is carried out. The acoustical similarity between apparently different networks is discussed. The approach is flexible to incorporate any other acoustic elements, provided the acoustic variables at the junctions of the element can be related by a transfer matrix a priori. Commercial automotive mufflers are often too complex to be broken into a cascade of one dimensional elements with predetermined transfer matrices. The one dimensional (1-D) scheme presented here is based on an algorithm that uses user friendly visual volume elements to generate the system equations which are then solved using a Gauss-Jordan elimination scheme to derive the overall transfer matrix of the muffler. This work attempts and succeeds to a great extent in exploiting the speed of the one dimensional analysis with the flexibility, generality and user friendliness of three dimensional analysis using geometric modeling. A code based on the developed algorithm has been employed to demonstrate the generality of the proposed method in analyzing commercial muffers by considering three very diverse classes of mufflers with different kinds of combinations of reactive, perforated and absorptive elements. Though the examples presented in the thesis are not very complex for they are meant to be just representative cases of certain classes of mufflers, yet the algorithm can handle a large domain of commercial mufflers of high degree of complexity. Results from the present algorithm have been validated through comparisons with both the analytical and the more general, three-dimensional FEM based results. The forte of the proposed method is its power to construct the system matrix consistent with the boundary conditions from the geometrical model to evaluate the four pole parameters of the entire muffer and thence its transmission loss,etc. Thus, the algorithm can be used in conjunction with the transfer matrix based muffler programs to analyze the entire exhaust system of an automobile. A different kind of acoustic filter than the above mentioned cases is then taken up for investigation. These refer to the specialized underwater acoustic filters laid as linings on submerged bodies. These kind of underwater noise control linings have three different types of objectives, namely, Echo Reduction, Transmission Reduction (TL maximization) and a combination thereof. These coatings have been shown to be behaving very differently with different shape, size and number of air channels present in the layer. In this regard, a finite element model based methodology has been followed. An hybrid type finite element based on the Pian and Tong formulation has been modified and used so as to make the computational efforts less demanding as compared to the original one. The developed finite element has been shown to be immune to the difficulties that arise due to the near incompressible characteristics of the viscoelastic materials used and the high distortion of the elements of the FE mesh. The adequacy of this formulation has been shown by comparing its results with the analytical, FE based, and experimental results. Then, this methodology has been used to analyze and generate design curves to control various geometrical parameters for proper designing of these linings. Different unit cell representations for different types of distributions of air cavities on the linings have been discussed. Four different types of layers have been introduced and analyzed to address different objectives mentioned above. They have been termed as the Anechoic layer, Insulation layer and Combination Layer of coupled and decoupled type in this thesis. The first two layers have been designed to achieve very dissimilar characteristics and the next two layers have been designed to balance their disparities. A thorough parametric study has been carried out on the geometrical parameters of all the layers to come up with the design guidelines. For anechoic and the insulation layers, different distributions have been analyzed with different unit cell geometries and their usability in specific situations has been outlined. Effect of static pressure has also been studied by using an approximate finite element method. This method can be used to simulate deep-sea testing environment.
6

Caracteriza??o do repert?rio ac?stico do botocinza, sotalia guianensis, e impacto de embarca??es no nordeste do brasil

Martins, Dalila Teles Le?o 26 April 2010 (has links)
Made available in DSpace on 2014-12-17T15:36:59Z (GMT). No. of bitstreams: 1 DalilaTLM_DISSERT.pdf: 2036255 bytes, checksum: ed8754e17f7a4951187f5fb000aa8918 (MD5) Previous issue date: 2010-04-26 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / The wide distribution along the Brazilian coast of specie Sotalia guianensis has been growing interest in searchers on the ecology of this species, addition to commercial interests by whalewatching. This work described the accoustic repertory of S. guianensis and their behavior associated and found if underwater noises affect this repertorie in Pipa-RN. It were analyzed 18:49h of recordings maked between april and june/2009. It were found 3258 whistles, 289 calls, 873 clicks and no gargle. The frequencies range of guiana dolphins was 1 a 48kHz and may be related to system response recorder and population s regionalization. The frequencies overlaps the noise made by motorboats, schooners and water bomb. The behavior travelling ocurred siletly in 72,58% and socialization presented no sound (56,4%) and presence of sound (43,6%). This great absence of sound may be relacioned to saving energy, probably because in this behaviors they can use physical and visual contacts. The foraging presented highest records of all class noise with 46,84% clicks, 33,84% whistles and 9,02% calls. All this sounds occurred differently in each behavior (travelling: x2 = 134,35 df = 3 p = 0,0001; foraging: x2 = 19,83 df = 3 p= 0,00018 and socialization x2 = 60,35 df = 3 p = 0,0001). It was possible to determine that underwater noise cause changes in the repertorie and does a considerable increase in whistle s number and reduce clicks. Also occurs changes in some whistles (FI: t=2,42, p=0,015; FF: t= -2,22, p=0,025), calls (FMI: t= -3,13, p=0,001; FMA: t= -3,49, p=0,0005; FD: t= -2,21, p=0,027; D: t=2,89, p=0,004) and clicks parameters (D: t= -3,85, p=0,0001; I: t= -5,32, p=0,0001) during presence of noise. These changes may be a strategy of these animals to win this sound barrier. We can not say which noise has more impact, ix however the water bomb seems to affect more the clicks and the motorboats seems to affect the others sounds. Little is know about auditive sensibility of this specie, but daily exposure to this noise may cause damage and this specie appears to have residence. The specie conservation is necessary because the population already seems to suffer damage as decrease in length of stay, number of individuals entering the inlet and the apparent diminution in the foragind during vessels presence and control standards and ambiental education can help. So, we can advance in knowledge about the ecology of this specie especially when it come to bioacoustics and their behaviors associated and reveals some of the impacts that the noise have brought to this population / A ampla distribui??o na costa brasileira da esp?cie Sotalia guianensis tem feito crescer o interesse pelos pesquisadores sobre a ecologia dessa esp?cie, al?m de interesses comerciais atrav?s do turismo de observa??o. Esse trabalho descreveu o repert?rio ac?stico S. guianensis e suas associa??es comportamentais e ainda, verificou se ru?dos subaqu?ticos de motores afetam o padr?o desse repert?rio, na regi?o de Pipa/RN. Foram analisadas 18:49h de grava??es realizadas entre os meses de abril e junho de 2009. Foram encontrados 3258 assobios, 289 gritos, 873 sequ?ncias de estalos e nenhum registro de gargarejo. A faixa de frequ?ncia dos botos variaram de 1 a 48kHz, que pode estar relacionada com a taxa de amostragem de 96kHz e com a regionaliza??o das popula??es. Essa faixa se sobrep?e as faixas utilizadas pelos ru?dos produzidos por lanchas, escunas e uma bomba d ?gua. Nas associa??es comportamentos e ac?stica, o estado de deslocamento ocorreu em 72,58% com aus?ncia de som e a socializa??o apresentou aus?ncia (56,4%) e presen?a de sons (43,6%). Essa aus?ncia de som pode estar relacionada com a economia de energia, visto que nesses comportamentos muitos eventos envolvem contatos f?sicos e visuais. A alimenta??o apresentou os maiores registros de todas as classes sonoras, com 46,84% de estalos, 33,84% de assobios e 9,02% de gritos. Todos os sons ocorreram com diferen?as significativas dentro de cada estado comportamental (deslocamento: x2 = 134,35 df = 3 p = 0,0001; alimenta??o: x2 = 19,83 df = 3 p= 0,00018 e socializa??o x2 = 60,35 df = 3 p = 0,0001). Com rela??o aos ru?dos, foi poss?vel verificar que esses sons causam modifica??es na vocaliza??o, com aumento consider?vel no n?mero de assobios e redu??o dos estalos. Ocorre, tamb?m vii altera??es de alguns par?metros dos assobios (FI: t=2,42, p=0,015; FF: t= - 2,22, p=0,025), gritos (FMI: t= -3,13, p=0,001; FMA: t= -3,49, p=0,0005; FD: t= -2,21, p=0,027; D: t=2,89, p=0,004) e estalos (D: t= -3,85, p=0,0001; I: t= -5,32, p=0,0001) durante a presen?a desses sons. Essas modifica??es podem ser uma estrat?gia que essa popula??o est? desenvolvendo para vencer a barreira dos ru?dos. N?o se pode afirmar qual dos tr?s ru?dos analisados causa maior impacto, entretanto a bomba d ?gua parece afetar mais os estalos, aumentando os valores de seus par?metros e a lancha parece afetar mais as outras classes sonoras. Pouco se sabe sobre a sensibilidade auditiva dessa esp?cie, mas exposi??es di?rias aos ru?dos podem trazer danos e essa esp?cie aparenta ter resid?ncia. Medidas para mitiga??o, como normas de controle das embarca??es e educa??o ambiental s?o necess?rias para a conserva??o da esp?cie, visto que a popula??o j? aparenta sofrer com danos como diminui??o do tempo de perman?ncia e n?mero de indiv?duos que entram na enseada, al?m da aparente diminui??o da alimenta??o durante a presen?a de embarca??es. Dessa forma, avan?a-se no conhecimento sobre a ecologia dessa esp?cie, principalmente quando se trata de bioac?stica e suas associa??es comportamentais, al?m de revelar alguns dos impactos que os ru?dos tem trazido para essa popula??o
7

La pollution sonore des océans et la règlementation du bruit sous-marin : un enjeu international qui prend tout son ampleur dans l’Arctique canadien

Altier, Jasmine 12 1900 (has links)
Les océans sont remplis de sons naturels et sont aujourd’hui de plus en plus envahis par des bruits d'origine humaine (bruits anthropiques). Ce mémoire étaye l’état actuel des connaissances sur les différentes sources de bruits sous-marins et leurs effets négatifs pour les espèces marines, les écosytèmes et les populations côtieres. Bien que le bruit soit un facteur de stress environnemental similaire à d'autres formes de pollution, la gestion du bruit anthropique a été négligée par les États et par le droit international. Cette étude met en lumière les difficultés pour le droit international et les États d’adopter des instruments spécialisés pour contrer le bruit anthropique alors que planent plusieurs incertitudes scientifiques. Le mémoire identifie et analyse les instruments contraignants et de soft law actuellement en vigueur, à l’international et au Canada, pour découvrir s’ils peuvent être mobilisés dans la lutte contre la pollution sonore dans les eaux arctiques canadiennes. L’adoption d’instruments juridiques ciblant spécifiquement les bruits anthropiques sous-marins est prônée mais avec la mise en garde que ce processus nécessitera une coopération inter et intra sectorielle concertée aux niveaux national, régional et international entre les milieux législatifs, scientifiques et décisionnels. / The world oceans are filled with natural sounds, which are being increasingly encroached upon by human sourced noises (anthropogenic noise). This thesis provides an overview of the current state of knowledge on the different sources of underwater noise and their negative effects on marine species, ecosystems and coastal populations. While anthropogenic noise is an environmental stressor similar to other forms of pollution, the management of anthropogenic noise has been neglected by States and by international law. This study highlights how scientific uncertainties and gaps complicate the process of crafting specialized international and domestic instruments to mitigate the impacts of underwater anthropogenic noise. The thesis identifies and analyzes binding and soft law instruments currently in force, internationally and in Canada, to discover whether they can be used to reduce noise pollution in Canadian Arctic waters. The adoption of legal instruments specifically applicable to anthropogenic underwater noise is advocated but with the caveat that it will require concerted inter and intra sectoral cooperation at the national, regional and international levels between legislative, scientific and decision-making circles.

Page generated in 0.0889 seconds