Spelling suggestions: "subject:"unfolded 1protein desponse (UPR)"" "subject:"unfolded 1protein coresponse (UPR)""
1 |
Molecular Mechanisms of Host Responses to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) InfectionCatanzaro, Nicholas Jr. 24 April 2020 (has links)
Porcine reproductive and respiratory syndrome virus (PRRSV) is arguably the most economically devastating pathogen affecting the global swine industry. Since the emergence of the virus in the late 1980s, vaccination strategies aimed to control the virus have not been very effective. Current commercial vaccines are generally protective against homologous or closely-related strains but ineffective at conferring heterologous protection against genetically-diverse strains of the virus. Consequently, emergence of variant and sometime more pathogenic strains of PRRSV continues in global swine herds. As such, there is a need for better understanding of the molecular mechanisms involved in the replication of the virus.
In order to better understand the molecular mechanisms of host responses to PRRSV replication, we first sought to evaluate the ability of the virus to induce stress granules (SGs) during PRRSV infection. SGs are intracellular, cytoplasmic aggregates of RNA-binding proteins (RBPs) and mRNA. Formation of SGs is observed upon cellular stress and ultimately function to arrest cellular translation to promote cellular survival until the stress has been remedied. Indeed, several viruses have been shown to modulate the SG pathways to facilitate viral replication and even suppress the host's immune response. However, it is currently unknown whether PRRSV modulates the SG response. First, we used confocal microscopy and fluorescent in situ hybridization (FISH) to determine the distribution of known SG marker proteins and cellular mRNAs. Our findings revealed that PRRSV induces a potent SG response at late time points post-infection, and that SGs were closely associated with viral replication complexes (VRCs). Subsequently, we demonstrated that SGs are dispensable for viral replication, as short hairpin RNA (shRNA)-mediated knockdown of critical SG components (G3BP1 and G3BP2) did not affect viral replication. Interestingly, we found that the PRRSV-induced SGs are formed in a PERK-dependent manner. PERK is an important sensor of ER stress and activator of the unfolded protein response (UPR). Further investigation into the PERK signaling pathway revealed that PRRSV induces a significant amount of ER stress upon the cell during viral infection, and that exogenous stress significantly impaired the ability of the virus to replicate in MARC145 cells. We also showed that PRRSV potently induces all three signaling branches of the UPR, including PERK. While PERK knockdown had no effect on cell viability or viral replication, it significantly upregulated the mRNA expression of interferon-β and interferon stimulated genes (ISGs). The results from our studies suggest a critical role for PERK in regulating the host innate immune response to PRRSV infection. Only with a better understanding of the underlying molecular mechanisms of PRRSV replication will we be able to rationally design more effective vaccines against the virus. / Doctor of Philosophy / Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically-devastating disease in the global swine industry. Annually, PRRSV is estimated to cause more than $600 million in economic losses to the swine industry in the United States alone. Current commercial vaccines against the virus are not effective against the diverse field strains largely due to the extreme heterogeneity of the virus. PRRSV is also able to potently suppress several aspects of the host's immune response and therefore establish a persistent infection. The underlying mechanisms of PRRSV-mediated immune suppression are not well understood. Therefore, in this dissertation we decided to investigate the molecular mechanisms of host responses to PRRSV infection. We first investigated the ability of the virus to induce stress granules (SGs). SGs are important intracellular regulatory components that modulate many aspects of the host's cellular processes, and have even been shown to play roles in regulating viral replication and controlling immune responses to viral infection. We demonstrate that PRRSV not only induces SGs, but that the PRRSV-induced SGs are closely associated with viral replication complexes (VRCs) within infected cells. The PRRSV-induced SGs were dispensable for viral replication.
PRRSV-induced SGs were previously shown to form in a PERK dependent manner. Therefore, in the second part of this dissertation research, we decided to investigate the PERK signaling pathway during PRRSV infection. PERK is an important sensor of ER stress and activator of the unfolded protein response (UPR). Our results showed that PRRSV potently induces ER stress and all three signaling branches of the UPR, including PERK. Furthermore, we revealed that PERK may play an important role in regulating the type I interferon response to PRRSV infection. The results from our studies will aid in understanding the underlying molecular mechanism of PRRSV replication which will help rationally design the next generation of more effective vaccines against this devastating swine pathogen.
|
2 |
Is Latent Equine Herpesvirus Type 1 (EHV-1) Reactivated by Triggering Activation of the Unfolded Protein Response in Equine Peripheral Blood Leukocytes?2013 June 1900 (has links)
Equine Herpesvirus type 1 (EHV-1) is a worldwide threat to the health of horses. It can cause mild respiratory disease, abortions and deaths of newborn foals as well as a potentially fatal neurologic disorder known as Equine Herpesvirus Myeloencephalopathy (EHM). The virus is maintained in populations by stress-induced periodic reactivation of virus in long-term latently infected horses and transmission of the reactivated virus to susceptible individuals. In horses, peripheral blood leukocytes (PBLs) are thought to be an important site for EHV-1 latent genomes. Since the Unfolded Protein Response (UPR) is a cellular response to a variety of stressors that has been linked to reactivation of herpes simplex virus in humans, a virus closely related to EHV-1, I tested the hypothesis that latent EHV-1 relies on the UPR as a pluripotent stress sensor and uses it to reactivate lytic gene expression.
Since little work has been done in defining the UPR in horses, I first successfully developed a quantitative real-time polymerase chain reaction (RT-qPCR) assay to detect and quantitate transcripts for selected UPR genes in equine dermal (E.Derm) cells and PBLs. Activation of the UPR was achieved in both cell types using thapsigargin and a difference in gene expression after activation of the UPR in two equine cell types was found. A nested PCR assay to detect and distinguish latent EHV-1 and EHV-4 was evaluated and the sensitivity of the technique to detect EHV-1 was determined. I discovered that the nested PCR technique was not sensitive enough to detect the estimated one latent viral genome in 50,000 PBLs.
Lytic EHV-1 infection was characterized by single step growth curve in E.Derm cells and consistent detection of temporal EHV-1 gene expression by RT-qPCR was achieved. The relationship between EHV-1 gene expression and UPR gene expression during lytic infection was investigated. While EHV-1 infection had no effect on UPR gene expression, activation of the UPR appeared to decrease the expression of EHV-1 genes temporarily and reversibly during the first 4 h after infection. Finally, detection of EHV-1 in PBLs from horses presumed to be latently infected by co-cultivation with E. Derm cells permissive to EHV-1 infection was attempted. To detect viral DNA, PBLs were stimulated with thapsigargin or interleukin 2 (IL-2) which was previously reported to induce reactivation of latent EHV-1. I was not able to reproduce previously published experiments of reactivation in vitro of latent EHV-1 by stimulation with IL-2, and virus reactivation did not occur after stimulation of PBLs with thapsigargin.
In summary, a RT-qPCR assay to measure the expression of equine UPR genes was developed and activation of the UPR by treatment of E.Derm cells and PBLs with thapsigargin was successfully achieved. A difference in gene expression after activation of the UPR in two equine cell types was found. In contrast to what has been reported for other alphaherpesviruses, there appears to be no, or only little, interaction between the UPR and EHV-1 during viral infection. Detection of latent EHV-1 genomes in PBLs was not achieved by using a nested PCR, as this technique was not sensitive enough to detect the estimated one latent viral genome in 50,000 PBLs. Finally, latent EHV-1 was not detected in presumed latently infected PBLs or reactivated by triggering the UPR in equine PBLs.
|
3 |
Cellular Mechanisms by which Alcohol Promotes HIV Protease Inhibitor-induced HepatotoxicityHinton, Michael 01 January 2019 (has links)
CELLULAR MECHANISMS BY WHICH ALCOHOL PROMOTES HIV PROTEASE INHIBITOR-INDUCED HEPATOTOXICITY
Michael Hinton, B.S.
A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University Virginia Commonwealth University, 2019
Major Director: Huiping Zhou
Professor, Department of Microbiology and Immunology
The development of highly-active-antiretroviral therapy(HAART) has allowed management of HIV and extended the lives of those infected. Alcohol abuse, which is very common in HIV-1 infected patients, is one of the most important co-morbid risk factors for liver injury and has been associated with the occurrence of serious metabolic syndrome and subsequent discontinuation of HAART in HIV patients. We have identified endoplasmic reticulum (ER) stress-induced proapoptotic factor CCAAT-element-binding protein homologous protein (CHOP) as an important mechanism underlying HIV PI-induced inflammation and hepatic lipotoxicity. However, little is known about the mechanistic pathways by which alcohol promotes HIV PI-induced hepatic lipotoxicity. The aim of this study was to determine if inhibition of CHOP expression prevents alcohol- and HIV PI-induced apoptosis and dysregulation of lipid metabolism. We demonstrated that co-administration of alcohol and HIV PIs induced unfolded protein response (UPR) activation, ER stress, and CHOP upregulation in rodent hepatocytes. Both alcohol and HIV PI-induced lipid accumulation and apoptosis were significantly reduced in CHOP-/- hepatocytes. Also, CHOP-/- hepatocytes treated with alcohol and HIV PIs showed inflammation.. Activation of the ER stress-induced proapoptotic factor CHOP is a key cellular mechanism underlying alcohol and HIV PI-induced hepatotoxicity. CHOP expression is key for alcohol and HIV PI-induced dysregulation of key genes involved in lipid metabolism in hepatocytes. Limitations of the study include the usage of global CHOP-/- in lieu of tissue-specific conditional knockout mouse models, nonobservance of the effects of alcohol and HIV PIs on extra-hepatic tissues, and incomplete investigation of the interplay of hepatocytes and resident macrophages.
|
4 |
The Unfolded Protein Response and its interplay with the MAPK-mediated pheromone response pathway in Ustilago maydisSchmitz, Lara 11 July 2019 (has links)
No description available.
|
5 |
Secretory Homeostasis and Fungal Pathogenesis: Characterization of the Contribution of Calnexin, SrgA, and the IreA Kinase to the Growth and Virulence of Aspergillus fumigatusPowers-Fletcher, Margaret MV 16 September 2013 (has links)
No description available.
|
6 |
Bedeutung des p53-Signalwegs für Apoptoseaktivierung und Zellzyklusarrestregulation durch das p14 ARF TumorsuppressorgenOverkamp, Tim 08 November 2012 (has links)
BH3-only Proteine, eine pro-apoptotische Untergruppe der Bcl-2 Proteinfamilie, sind zentrale Mediatoren von apoptotischen Signalen durch die Regulierung intrinsischer Apoptose-signalwege. Unsere Arbeitsgruppe hat vor kurzem gezeigt, dass Apoptose, die durch den p14ARF Tumorsuppressor induziert wird über die p53-abhängige Aktivierung des BH3-only Proteins Puma/Bbc3 vermittelt wird. Interessanterweise induziert p14ARF aber auch in p53 defizienten Zellen Zellzyklusarrest und Apoptose. Die dahinterliegenden Signalwege sind jedoch nicht bekannt. In dieser Arbeit berichten wir, dass das BH3-only Protein Bmf (Bcl-2 modifying factor) beim p14ARF-induzierten Zelltod in p53 defizienten Zellen eine wichtige Rolle spielt. Expression von p14ARF führt zu einer Induktion der PERK Kinase, daran anschließender Phosphorylierung von eIF2α sowie Aktivierung der stromabwärts liegenden Transkriptionsfaktoren ATF4 und CHOP. Diese Signalkaskade ist normalerweise Teil einer zellulären Antwort auf fehl- oder ungefaltete Proteine im Endoplasmatischen Retikulum (ER), der sogenannten ‘unfolded protein response’ (UPR), die zum einen durch verminderte Translationsinitiation und Hochregulierung von Chaperonen die Menge der fehlgefalteten Proteine reduzieren soll. Allerdings induziert p14ARF keinen ER Stress, sondern den PERK‒CHOP Signalweg. Die Transkriptionsfaktoren ATF4 und CHOP binden direkt in der Promotorregion von bmf und sind für dessen transkriptionelle Regulation verantwortlich. Unsere Daten zeigen, dass der PERK‒eIF2α‒ATF4‒CHOP Signalweg eine wesentliche Rolle bei der Induktion von Apoptose durch p14ARF spielt. Dieser Weg könnte ein Sicherungsmechanismus sein, der es den Zellen auch nach Verlust von p53 erlaubt Apoptose einzuleiten, nachdem p14ARF durch Onkogene hochreguliert wurde. / BH3-only proteins, a pro-apoptotic subgroup of the Bcl-2 family of proteins, are central mediators of apoptosis signals by regulating the intrinsic apoptosis pathway. We have recently shown, that apoptosis triggered by the p14ARF tumour suppressor protein is mediated by the p53-dependent activation of the BH3-only protein Puma/Bbc3. Nevertheless, expression of p14ARF in p53-family deficient cells is capable of inducing both cell cycle arrest and apoptosis, but the signalling pathways initiated remain elusive. Here, we report that the BH3-only protein Bmf (Bcl-2 modifying factor) is involved in cell death in p53-deficient cells triggered by p14ARF. Expression of p14ARF leads to the induction of the PERK kinase, subsequent phosphorylation of eIF2α and activation of transcription factors ATF4 and CHOP. This signalling cascade is usually part of the ‘unfolded protein response’ (UPR), which is activated upon ER stress to reduce the amount of misfolded proteins by reduction of global protein translation initiation and upregulation of chaperones. Of note, p14ARF does not induce ER stress but activates the PERK‒CHOP pathway. ATF4 and CHOP transcription factors directly bind to the promotor region of bmf and induce its transcription. These data suggest that the PERK‒eIF2α‒ATF4‒CHOP signalling pathway may play a substantial role in mediating p14ARF-triggered apoptosis. This pathway could play the role of a ‘fail-safe’ mechanism that allows cells, even after loss of p53, to undergo apoptosis induced by upregulation of p14ARF by oncogenes.
|
7 |
Unfolded Protein Response in Malaria ParasiteChaubey, Shwetha January 2014 (has links) (PDF)
Plasmodium falciparum is responsible for the most virulent form of human malaria. The biology of the intra-erythrocytic stage of P. falciparum is the most well studied as it is this stage that marks the clinical manifestation of malaria. To establish a successful infection, P. falciparum brings about extensive remodeling of erythrocytes, its host compartment. The infected erythrocytes harbor several parasite induced membranous structures. Most importantly, pathogenesis related structures termed knobs, which impart cytoadherence, appear on the cell surface of the infected erythrocytes. For bringing about such eccentric renovations in its host compartment, the parasite exports 8% of its genome (~400 proteins) to various destinations in the host cell. Studies from our lab have shown that proteins belonging to heat shock protein40 (Hsp40) and heat shock protein70 (Hsp70) group of chaperones are also exported to the host compartment. We and others have implicated these chaperones in important processes such as protein trafficking and chaperoning assembly of parasitic proteins into the cytoadherent knobs.
As detailed above, malaria parasite invests a lot of energy in exporting a large number of proteins including chaperones in the red blood cell to meet its pathogenic demands. In order to do so, it heavily relies on its secretory pathway. However, it is known that the parasite experiences a significant amount of oxidative stress on account of heme detoxification, its own metabolism and the immune system of the host. The parasite also effluxes large quantities of reduced thiols such as glutathione and homocysteine into the extracellular milieu indicative of redox perturbation. Additionally, the parasite lacks Peroxiredoxin IV, which otherwise localizes in the ER and carries out detoxification of peroxide generated as a result of oxidative protein folding. Together, these factors indicate that maintaining redox homeostasis is a challenging task for the parasite. It also implies that the ER, where the redox balance is even more critical as it requires oxidising environment for protein folding, is predisposed to stress. In light of this fact and the importance of secretory pathway in malaria pathogenesis, we decided to address the ways and mechanisms used by the parasite to tackle perturbations in its secretory pathway.
Examination of a canonical unfolded protein response pathway in P. falciparum
ER-stress is a condition arising whenever the load of unfolded proteins increases the folding capacity of the ER. However, eukaryotes have evolved a fairly well conserved homeostatic response pathway known as unfolded protein response (UPR) to tackle ER-stress. This signal transduction pathway is composed of three arms involving three ER-transmembrane signal transducers namely; IRE1, ATF6 and PERK. IRE1 brings about splicing of a bZIP transcription factor, XBP1/Hac1 and ATF6 becomes activated upon getting proteolytically cleaved in the Golgi. These transcription factors then migrate to the nucleus where they bind onto the ER-stress elements thereby, leading to the transcriptional up-regulation of the UPR targets such as ER chaperones and components of ER associated degradation (ERAD) pathway which rescue the function of the ER. PERK on the other hand brings about translational attenuation by phosphorylating eIF2α, thereby providing parasite the benefit of time to recover.
We started our examination on UPR in Plasmodium by carrying out in silico analysis of the major components of UPR in the parasite by using Homo sapiens protein sequences as the query. We found that the parasite lacks the homologues of all the transcriptional regulators of canonical UPR. Only PERK component of the UPR was found to be present in the parasite. To rule out the existence of the canonical UPR in P. falciparum, we examined the status of UPR targets by subjecting the parasites to treatment with DTT. DTT perturbs the disulfide oxidation in the ER and thereby inhibits protein folding leading to ER-stress. Owing to the missing components of a canonical UPR, we did not find up-regulation of known UPR targets such as ER-chaperones including PfBiP, PfGrp94, PfPDI and ERAD marker Derlin1 at transcript as well as protein level. Owing to the presence of a PERK homologue, phosphorylation of eIF2α followed by attenuation of protein synthesis was observed upon subjecting the parasites to DTT mediated ER-stress. In the absence of a canonical UPR, the parasites were found to be hypersensitive to ER-stress in comparison to the mammalian counterpart. In the presence of DTT, the parasites showed perturbation in the redox homeostasis as indicated by increase in the levels of ROS.
Next, we sought to examine if the parasites resorted to any alternate means of increasing the availability of chaperones in the ER. For this, we analysed the involvement of another Hsp70 family member, Hsp70-x which is homologous to BiP and which is known to traverse the ER while getting exported to the erythrocyte compartment. Interestingly, we found that upon exposure to ER-stress, the export of this protein is partially blocked and around 30% of the protein is retained in the ER. On the other hand, there was no effect on the trafficking of another exported chaperone KAHsp40. This indicates that the parasite possibly recruits this pool of retained Hsp70-x for the chaperoning of unfolded proteins in the ER.
Global response to ER-stress in P. falciparum
To dig deeper into the parasite specific strategies employed for dealing with ER-stress at a global level, we carried out high throughput transcriptomic and proteomic analysis upon subjecting the parasites to DTT mediated ER-stress. Microarray based gene expression profiling was carried out upon subjecting the parasites to DTT mediated ER-stress. We found that the parasite mounts a transcriptional response as indicated by up-regulation of 155 transcripts. In congruence with our biochemical analysis, we did not find up-regulation of ER chaperones as well as ERAD proteins. Functional grouping of the up-regulated genes revealed large number of hypothetical proteins in our list of differentially expressed genes. The genes encoding exported proteins represent yet another abundant class.
In the course of examining the involvement of Plasmodium specific transcriptional regulators mediating response to DTT induced ER-stress, we identified 4 genes belonging to the family of AP2 transcription factors. AP2 (Apetela-2) are specific transcription factors which are possessed by apicomplexa and bring about regulation of developmental processes and stress response in plants. On comparing our list of up-regulated genes with the previously known targets of AP2 factors, we found that an entire cascade of AP2 factors is up-regulated upon DTT-mediated ER stress. Thus, AP2 factors appear to be the major stress response mediators as they are together responsible for the up-regulation of 60% of genes identified in this study. In addition, another striking observation made, was the up-regulation of a few sexual stage specific transcripts. 2D Gel electrophoresis and 2D-DIGE based Proteomic analysis indicated an up-regulation of secretory proteins and some components of vesicular trafficking and secretory machinery possibly to overcome the block in the functions of the secretory pathway.
ER-stress triggers stage transition in P. falciparum Intrigued by the up-regulation of a few sexual stage specific genes, we were curious to examine if there was a functional significance of this observation. To this end, we decided to investigate the effect of ER-stress on induction of gametocytes, the only sexual stage found in humans. Indeed, we found a two fold induction in the numbers of gametocytes formed upon challenging the parasite with DTT mediated ER-stress. The induction of gametocytogenesis was also observed by using a clinical isolate of P. falciparum for the assay. The DTT treated cultures progressed through the gametocytogenesis pathway normally forming all the five morphologically distinct stages. Then we sought to examine if this phenomenon could be simulated in the physiological scenario as well. For this, we made use of a rodent model of malaria, P. berghei. Two different treatment regimes involving 1) direct injection of increasing concentration of DTT into P. berghei infected mice and 2) injection of DTT pretreated P. berghei infected erythrocytes into healthy mice were followed. In both cases, a significant increase in the gametocyte induction was observed. Having seen that Plasmodium undergoes gametocytogenesis upon exposure to ER-stress not only in in vitro cultures but also in in vivo scenario, we wanted to identify the players involved in the commitment to sexual stage. Recently, a transcription factor belonging to AP2 class of transcription factors, referred to as AP2-G has been implicated in committing the asexual parasites for transition to gametocyte stage. To examine the role of this factor in the phenotype observed by us, we looked at the effect of DTT on AP2-G. Interestingly, we found around 6 folds up-regulation in the expression of AP2-G levels under ER-stress. The downstream targets of AP2-G, many of which are the markers of gametocyte were also found to be up-regulated upon being exposed to DTT mediated ER-stress indicating the launch of a transcriptional program which together works in the direction of transition to gametocytes. Having seen that P. falciparum undergoes ametocytogenesis in response to DTT treatment both under in vitro and in vivo conditions, we sought to look for probable physiological analogue of DTT. Since glutathione is the major cellular redox buffer, critical for redox homeostasis, we quantitated the levels of both oxidized and reduced forms of this non protein thiol using Mass Spectrometric approach. We found that the levels of reduced forms of glutathione significantly increased upon treating the parasites with DTT. This indicates that the levels of glutathione could be one of the physiological triggers of gametocytogenesis.
Conclusion
In conclusion, our study analyses the ways and mechanisms employed by malaria parasite to cope with perturbations to its secretory pathway. We have established the absence of a canonical UPR in this parasite and our results suggest that Plasmodium has developed a three stage response to cope with ER stress: 1) an early adaptation to increase the local concentration of chaperones in the ER by partially blocking the export of a Hsp70 family member, 2) activation of gene expression cascade involving AP2 transcription factors and 3) a consequent switch to the transmissible sexual stage. Hence, our study throws light on a novel physiological adaptation utilised by malaria parasite to tackle stress to its secretory pathway. Gametocytogenesis, which can be transmitted to the mosquito vector, could hence serve as an effective means to escape ER-stress altogether. Importantly, while it is widely known that stress brings about switch towards sexual stages in P. falciparum, the molecular triggers involved in this process remain obscure in the field of malaria biology. Therefore, our findings also address this long standing question by providing the evidence of ER-stress being one such trigger required for switching to the transmissible sexual stages.
|
8 |
Role of rare calreticulin mutants and of the endoplasmic reticulum stress in the pathogenesis of myeloproliferative neoplasms / Rôle de mutants rares de la calréticuline et du stress du réticulum endoplasmique dans la pathogenèse des néoplasmes myéloprolifératifsToppaldoddi, Katte Rao 25 September 2017 (has links)
Après la découverte des mutations de la calréticuline dans les néoplasmes classiques myéloproliferatifs négatifs pour le Ph1, les travaux se sont focalisés sur les deux mutations les plus fréquentes, c'est-à-dire la calréticuline del52 et l’ins5, mais il existe environ 20% de mutants rares de la calréticuline (une cinquantaine), qui ont été classés en type-1 « like » et type-2 « like », classification basée sur leur structure. Cependant il reste à déterminer si cette classification est pertinente du point de vue fonctionnel, ce qui pourrait avoir des conséquences pour la prise en charge des patients et leur traitement. Ici, nous démontrons que deux mutants rares de type-1 (del34 et del46) et un de type-2 (del19) se comportent de manière similaire aux deux mutations fondatrices de cette classification, del52 et ins5, respectivement. Ces résultats ont été validés par des expériences in vivo chez la souris. Tous les mutants de la calréticuline (del19, del34 et del46) nécessitent absolument le récepteur de la thrombopoïétine, appelé MPL, pour induire une transformation cellulaire en provoquant une activation indépendante de la thrombopoïétine de la voie MPL / JAK2-STAT, comme les mutants del52 et ins5. Dans les expériences de transplantation de moelle osseuse de souris, les mutants rares de type-1 sont associés à une progression fréquente de la maladie d’un tableau proche d’une thrombocytémie essentielle à une myélofibrose, tandis que le mutant rare de type 2 est associé à une légère thrombocytose. Du point de vue hématopoïétique, les mutants rares de type-1 provoquent une amplification au niveau des cellules souches hématopoïétiques donc à un stade précoce tandis que les mutants rares de type-2 provoquent une amplification tardive de la mégacaryopoïèse. Grâce à une modélisation protéique basée sur l'homologie des mutants de calréticuline, nous avons identifié des domaines oncogènes qui seraient potentiellement responsables de l'interaction pathologique de la calréticuline et de MPL pour conduire à une activation indépendante de la thrombopoïétine. Maintenant, ces résultats in silico doivent être absolument validés par des études structure fonction. Enfin, nous avons modélisé un nouveau mécanisme de signalisation dans la leucémie myéloïde chronique comprenant IRE-1alpha, un bras de la voie de réponse des protéines mal repliées (UPR), qui pourrait être responsable de la perte de la fonction de la p53 pendant la progression de la leucémie myéloïde chronique vers une leucémie aiguë. Un tel mécanisme pourrait être impliqué dans les autres MPN. / After the discovery of calreticulin mutations in classical Ph1- Myeloproliferative Neoplasms, extensive investigation is underway on the two most frequent mutations, i.e., del52 and ins5, but it remains that the rare calreticulin mutants, which include both type-1 like and type-2 like require a similar investigation for ascertaining whether the classification of type-1 and type-2 has a functional relevance as well as for therapeutic intervention and patient management. Here we demonstrate that type-1 like (del34 and del46) and type-2 like (del19) mutants behave similarly as del52 and ins5 mutants, respectively. Moreover, we validate our findings with in vivo experiments. All the calreticulin mutants (del19, del34 and del46) absolutely require the thrombopoietin receptor, MPL, to induce cell transformation by causing ligand independent activation of the MPL/JAK2-STAT pathway. In mouse bone marrow transplantation experiments, type-1 like mutants are associated with frequent progression from an essential thrombocythemia-like phenotype to myelofibrosis whereas type-2 like mutant is associated with mild thrombocytosis. Type-1 like mutants cause clonal amplification of early hematopoetic stem cells whereas the type-2 like mutant causes late platelet amplification. Further, by homology based protein modeling of calreticulin mutants, we have identified possible oncogenic domains responsible for pathologic interaction of CALR and MPL leading to ligand independent activation of MPL. Now they must be validated by structural-functional studies Finally, we have modelled a novel signaling mechanism in chronic myeloid leukemia comprising of IRE-1alpha, an unfolded protein response (UPR) pathway arm, which may be responsible for loss of the WT p53 function during leukemic development and progression. Such a mechanism may be involved in the other MPNs
|
Page generated in 0.0796 seconds