• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The lateral deflections of plates with elastic supports

Wu, Tzong January 1983 (has links)
No description available.
12

Mathematical Analysis of an SEIRS Model with Multiple Latent and Infectious Stages in Periodic and Non-periodic Environments

Melesse, Dessalegn Yizengaw 30 August 2010 (has links)
The thesis focuses on the qualitative analysis of a general class of SEIRS models in periodic and non-periodic environments. The classical SEIRS model, with standard incidence function, is, first of all, extended to incorporate multiple infectious stages. Using Lyapunov function theory and LaSalle's Invariance Principle, the disease-free equilibrium (DFE) of the resulting SEI<sup>n</sup>RS model is shown to be globally-asymptotically stable whenever the associated reproduction number is less than unity. Furthermore, this model has a unique endemic equilibrium point (EEP), which is shown (using a non-linear Lyapunov function of Goh-Volterra type) to be globally-asymptotically stable for a special case. The SEI<sup>n</sup>RS model is further extended to incorporate arbitrary number of latent stages. A notable feature of the resulting SE<sup>m</sup>I<sup>n</sup>RS model is that it uses gamma distribution assumptions for the average waiting times in the latent (m) and infectious (n) stages. Like in the case of the SEI<sup>n</sup>RS model, the SE<sup>m</sup>I<sup>n</sup>RS model also has a globally-asymptotically stable DFE when its associated reproduction threshold is less than unity, and it has a unique EEP (which is globally-stable for a special case) when the threshold exceeds unity. The SE<sup>m</sup>I<sup>n</sup>RS model is further extended to incorporate the effect of periodicity on the disease transmission dynamics. The resulting non-autonomous SE<sup>m</sup>I<sup>n</sup>RS model is shown to have a globally-stable disease-free solution when the associated reproduction ratio is less than unity. Furthermore, the non-autonomous model has at least one positive (non-trivial) periodic solution when the reproduction ratio exceeds unity. It is shown (using persistence theory) that, for the non-autonomous model, the disease will always persist in the population whenever the reproduction ratio is greater than unity. One of the main mathematical contributions of this thesis is that it shows that adding multiple latent and infectious stages, gamma distribution assumptions (for the average waiting times in these stages) and periodicity to the classical SEIRS model (with standard incidence) does not alter the main qualitative dynamics (pertaining to the persistence or elimination of the disease from the population) of the SEIRS model.
13

Mathematical Analysis of an SEIRS Model with Multiple Latent and Infectious Stages in Periodic and Non-periodic Environments

Melesse, Dessalegn Yizengaw 30 August 2010 (has links)
The thesis focuses on the qualitative analysis of a general class of SEIRS models in periodic and non-periodic environments. The classical SEIRS model, with standard incidence function, is, first of all, extended to incorporate multiple infectious stages. Using Lyapunov function theory and LaSalle's Invariance Principle, the disease-free equilibrium (DFE) of the resulting SEI<sup>n</sup>RS model is shown to be globally-asymptotically stable whenever the associated reproduction number is less than unity. Furthermore, this model has a unique endemic equilibrium point (EEP), which is shown (using a non-linear Lyapunov function of Goh-Volterra type) to be globally-asymptotically stable for a special case. The SEI<sup>n</sup>RS model is further extended to incorporate arbitrary number of latent stages. A notable feature of the resulting SE<sup>m</sup>I<sup>n</sup>RS model is that it uses gamma distribution assumptions for the average waiting times in the latent (m) and infectious (n) stages. Like in the case of the SEI<sup>n</sup>RS model, the SE<sup>m</sup>I<sup>n</sup>RS model also has a globally-asymptotically stable DFE when its associated reproduction threshold is less than unity, and it has a unique EEP (which is globally-stable for a special case) when the threshold exceeds unity. The SE<sup>m</sup>I<sup>n</sup>RS model is further extended to incorporate the effect of periodicity on the disease transmission dynamics. The resulting non-autonomous SE<sup>m</sup>I<sup>n</sup>RS model is shown to have a globally-stable disease-free solution when the associated reproduction ratio is less than unity. Furthermore, the non-autonomous model has at least one positive (non-trivial) periodic solution when the reproduction ratio exceeds unity. It is shown (using persistence theory) that, for the non-autonomous model, the disease will always persist in the population whenever the reproduction ratio is greater than unity. One of the main mathematical contributions of this thesis is that it shows that adding multiple latent and infectious stages, gamma distribution assumptions (for the average waiting times in these stages) and periodicity to the classical SEIRS model (with standard incidence) does not alter the main qualitative dynamics (pertaining to the persistence or elimination of the disease from the population) of the SEIRS model.
14

Uniformly Area Expanding Flows in Spacetimes

Xu, Hangjun January 2014 (has links)
<p>The central object of study of this thesis is inverse mean curvature vector flow of two-dimensional surfaces in four-dimensional spacetimes. Being a system of forward-backward parabolic PDEs, inverse mean curvature vector flow equation lacks a general existence theory. Our main contribution is proving that there exist infinitely many spacetimes, not necessarily spherically symmetric or static, that admit smooth global solutions to inverse mean curvature vector flow. Prior to our work, such solutions were only known in spherically symmetric and static spacetimes. The technique used in this thesis might be important to prove the Spacetime Penrose Conjecture, which remains open today. </p><p>Given a spacetime $(N^{4}, \gbar)$ and a spacelike hypersurface $M$. For any closed surface $\Sigma$ embedded in $M$ satisfying some natural conditions, one can ``steer'' the spacetime metric $\gbar$ such that the mean curvature vector field of $\Sigma$ becomes tangential to $M$ while keeping the induced metric on $M$. This can be used to construct more examples of smooth solutions to inverse mean curvature vector flow from smooth solutions to inverse mean curvature flow in a spacelike hypersurface.</p> / Dissertation
15

Efficient high-dimensional filtering for image and video processing

Gastal, Eduardo Simões Lopes January 2015 (has links)
Filtragem é uma das mais importantes operações em processamento de imagens e vídeos. Em particular, filtros de altas dimensões são ferramentas fundamentais para diversas aplicações, tendo recebido recentemente significativa atenção de pesquisadores da área. Infelizmente, implementações ingênuas desta importante classe de filtros são demasiadamente lentas para muitos usos práticos, especialmente tendo em vista o aumento contínuo na resolução de imagens capturadas digitalmente. Esta dissertação descreve três novas abordagens para filtragem eficiente em altas dimensões: a domain transform, os adaptive manifolds, e uma formulação matemática para a aplicação de filtros recursivos em sinais amostrados não-uniformemente. A domain transform, representa o estado-da-arte em termos de algoritmos para filtragem utilizando métrica geodésica. A inovação desta abordagem é a utilização de um procedimento simples de redução de dimensionalidade para implementar eficientemente filtros de alta dimensão. Isto nos permite a primeira demonstração de filtragem com preservação de arestas em tempo real para vídeos coloridos de alta resolução (full HD). Os adaptive manifolds, representam o estado-da-arte em termos de algoritmos para filtragem utilizando métrica Euclidiana. A inovação desta abordagem é a ideia de subdividir o espaço de alta dimensão em fatias não-lineares de mais baixa dimensão, as quais são filtradas independentemente e finalmente interpoladas para obter uma filtragem de alta dimensão com métrica Euclidiana. Com isto obtemos diversos avanços em relação a técnicas anteriores, como filtragem mais rápida e requerendo menos memória, além da derivação do primeiro filtro Euclidiano com custo linear tanto no número de pixels da imagem (ou vídeo) quanto na dimensionalidade do espaço onde o filtro está operando. Finalmente, introduzimos uma formulação matemática que descreve a aplicação de um filtro recursivo em sinais amostrados de maneira não-uniforme. Esta formulação estende a ideia de filtragem geodésica para filtros recursivos arbitrários (tanto passa-baixa quanto passa-alta e passa-banda). Esta extensão fornece maior controle sobre as respostas desejadas para os filtros, as quais podem então ser melhor adaptadas para aplicações específicas. Como exemplo, demonstramos—pela primeira vez na literatura—filtros geodésicos com formato Gaussiano, Laplaciana do Gaussiano, Butterworth, e Cauer, dentre outros. Com a possibilidade de se trabalhar com filtros arbitrários, nosso método permite uma nova variedade de efeitos para aplicações em imagens e vídeos. / Filtering is arguably the single most important operation in image and video processing. In particular, high-dimensional filters are a fundamental building block for several applications, having recently received considerable attention from the research community. Unfortunately, naive implementations of such an important class of filters are too slow for many practical uses, specially in light of the ever increasing resolution of digitally captured images. This dissertation describes three novel approaches to efficiently perform high-dimensional filtering: the domain transform, the adaptive manifolds, and a mathematical formulation for recursive filtering of non-uniformly sampled signals. The domain transform defines an isometry between curves on the 2D image manifold in 5D and the real line. It preserves the geodesic distance between points on these curves, adaptively warping the input signal so that high-dimensional geodesic filtering can be efficiently performed in linear time. Its computational cost is not affected by the choice of the filter parameters; and the resulting filters are the first to work on color images at arbitrary scales in real time, without resorting to subsampling or quantization. The adaptive manifolds compute the filter’s response at a reduced set of sampling points, and use these for interpolation at all input pixels, so that high-dimensional Euclidean filtering can be efficiently performed in linear time. We show that for a proper choice of sampling points, the total cost of the filtering operation is linear both in the number of pixels and in the dimension of the space in which the filter operates. As such, ours is the first high-dimensional filter with such a complexity. We present formal derivations for the equations that define our filter, providing a sound theoretical justification. Finally, we introduce a mathematical formulation for linear-time recursive filtering of non-uniformly sampled signals. This formulation enables, for the first time, geodesic edge-aware evaluation of arbitrary recursive infinite impulse response filters (not only low-pass), which allows practically unlimited control over the shape of the filtering kernel. By providing the ability to experiment with the design and composition of new digital filters, our method has the potential do enable a greater variety of image and video effects. The high-dimensional filters we propose provide the fastest performance (both on CPU and GPU) for a variety of real-world applications. Thus, our filters are a valuable tool for the image and video processing, computer graphics, computer vision, and computational photography communities.
16

Efficient high-dimensional filtering for image and video processing

Gastal, Eduardo Simões Lopes January 2015 (has links)
Filtragem é uma das mais importantes operações em processamento de imagens e vídeos. Em particular, filtros de altas dimensões são ferramentas fundamentais para diversas aplicações, tendo recebido recentemente significativa atenção de pesquisadores da área. Infelizmente, implementações ingênuas desta importante classe de filtros são demasiadamente lentas para muitos usos práticos, especialmente tendo em vista o aumento contínuo na resolução de imagens capturadas digitalmente. Esta dissertação descreve três novas abordagens para filtragem eficiente em altas dimensões: a domain transform, os adaptive manifolds, e uma formulação matemática para a aplicação de filtros recursivos em sinais amostrados não-uniformemente. A domain transform, representa o estado-da-arte em termos de algoritmos para filtragem utilizando métrica geodésica. A inovação desta abordagem é a utilização de um procedimento simples de redução de dimensionalidade para implementar eficientemente filtros de alta dimensão. Isto nos permite a primeira demonstração de filtragem com preservação de arestas em tempo real para vídeos coloridos de alta resolução (full HD). Os adaptive manifolds, representam o estado-da-arte em termos de algoritmos para filtragem utilizando métrica Euclidiana. A inovação desta abordagem é a ideia de subdividir o espaço de alta dimensão em fatias não-lineares de mais baixa dimensão, as quais são filtradas independentemente e finalmente interpoladas para obter uma filtragem de alta dimensão com métrica Euclidiana. Com isto obtemos diversos avanços em relação a técnicas anteriores, como filtragem mais rápida e requerendo menos memória, além da derivação do primeiro filtro Euclidiano com custo linear tanto no número de pixels da imagem (ou vídeo) quanto na dimensionalidade do espaço onde o filtro está operando. Finalmente, introduzimos uma formulação matemática que descreve a aplicação de um filtro recursivo em sinais amostrados de maneira não-uniforme. Esta formulação estende a ideia de filtragem geodésica para filtros recursivos arbitrários (tanto passa-baixa quanto passa-alta e passa-banda). Esta extensão fornece maior controle sobre as respostas desejadas para os filtros, as quais podem então ser melhor adaptadas para aplicações específicas. Como exemplo, demonstramos—pela primeira vez na literatura—filtros geodésicos com formato Gaussiano, Laplaciana do Gaussiano, Butterworth, e Cauer, dentre outros. Com a possibilidade de se trabalhar com filtros arbitrários, nosso método permite uma nova variedade de efeitos para aplicações em imagens e vídeos. / Filtering is arguably the single most important operation in image and video processing. In particular, high-dimensional filters are a fundamental building block for several applications, having recently received considerable attention from the research community. Unfortunately, naive implementations of such an important class of filters are too slow for many practical uses, specially in light of the ever increasing resolution of digitally captured images. This dissertation describes three novel approaches to efficiently perform high-dimensional filtering: the domain transform, the adaptive manifolds, and a mathematical formulation for recursive filtering of non-uniformly sampled signals. The domain transform defines an isometry between curves on the 2D image manifold in 5D and the real line. It preserves the geodesic distance between points on these curves, adaptively warping the input signal so that high-dimensional geodesic filtering can be efficiently performed in linear time. Its computational cost is not affected by the choice of the filter parameters; and the resulting filters are the first to work on color images at arbitrary scales in real time, without resorting to subsampling or quantization. The adaptive manifolds compute the filter’s response at a reduced set of sampling points, and use these for interpolation at all input pixels, so that high-dimensional Euclidean filtering can be efficiently performed in linear time. We show that for a proper choice of sampling points, the total cost of the filtering operation is linear both in the number of pixels and in the dimension of the space in which the filter operates. As such, ours is the first high-dimensional filter with such a complexity. We present formal derivations for the equations that define our filter, providing a sound theoretical justification. Finally, we introduce a mathematical formulation for linear-time recursive filtering of non-uniformly sampled signals. This formulation enables, for the first time, geodesic edge-aware evaluation of arbitrary recursive infinite impulse response filters (not only low-pass), which allows practically unlimited control over the shape of the filtering kernel. By providing the ability to experiment with the design and composition of new digital filters, our method has the potential do enable a greater variety of image and video effects. The high-dimensional filters we propose provide the fastest performance (both on CPU and GPU) for a variety of real-world applications. Thus, our filters are a valuable tool for the image and video processing, computer graphics, computer vision, and computational photography communities.
17

Efficient high-dimensional filtering for image and video processing

Gastal, Eduardo Simões Lopes January 2015 (has links)
Filtragem é uma das mais importantes operações em processamento de imagens e vídeos. Em particular, filtros de altas dimensões são ferramentas fundamentais para diversas aplicações, tendo recebido recentemente significativa atenção de pesquisadores da área. Infelizmente, implementações ingênuas desta importante classe de filtros são demasiadamente lentas para muitos usos práticos, especialmente tendo em vista o aumento contínuo na resolução de imagens capturadas digitalmente. Esta dissertação descreve três novas abordagens para filtragem eficiente em altas dimensões: a domain transform, os adaptive manifolds, e uma formulação matemática para a aplicação de filtros recursivos em sinais amostrados não-uniformemente. A domain transform, representa o estado-da-arte em termos de algoritmos para filtragem utilizando métrica geodésica. A inovação desta abordagem é a utilização de um procedimento simples de redução de dimensionalidade para implementar eficientemente filtros de alta dimensão. Isto nos permite a primeira demonstração de filtragem com preservação de arestas em tempo real para vídeos coloridos de alta resolução (full HD). Os adaptive manifolds, representam o estado-da-arte em termos de algoritmos para filtragem utilizando métrica Euclidiana. A inovação desta abordagem é a ideia de subdividir o espaço de alta dimensão em fatias não-lineares de mais baixa dimensão, as quais são filtradas independentemente e finalmente interpoladas para obter uma filtragem de alta dimensão com métrica Euclidiana. Com isto obtemos diversos avanços em relação a técnicas anteriores, como filtragem mais rápida e requerendo menos memória, além da derivação do primeiro filtro Euclidiano com custo linear tanto no número de pixels da imagem (ou vídeo) quanto na dimensionalidade do espaço onde o filtro está operando. Finalmente, introduzimos uma formulação matemática que descreve a aplicação de um filtro recursivo em sinais amostrados de maneira não-uniforme. Esta formulação estende a ideia de filtragem geodésica para filtros recursivos arbitrários (tanto passa-baixa quanto passa-alta e passa-banda). Esta extensão fornece maior controle sobre as respostas desejadas para os filtros, as quais podem então ser melhor adaptadas para aplicações específicas. Como exemplo, demonstramos—pela primeira vez na literatura—filtros geodésicos com formato Gaussiano, Laplaciana do Gaussiano, Butterworth, e Cauer, dentre outros. Com a possibilidade de se trabalhar com filtros arbitrários, nosso método permite uma nova variedade de efeitos para aplicações em imagens e vídeos. / Filtering is arguably the single most important operation in image and video processing. In particular, high-dimensional filters are a fundamental building block for several applications, having recently received considerable attention from the research community. Unfortunately, naive implementations of such an important class of filters are too slow for many practical uses, specially in light of the ever increasing resolution of digitally captured images. This dissertation describes three novel approaches to efficiently perform high-dimensional filtering: the domain transform, the adaptive manifolds, and a mathematical formulation for recursive filtering of non-uniformly sampled signals. The domain transform defines an isometry between curves on the 2D image manifold in 5D and the real line. It preserves the geodesic distance between points on these curves, adaptively warping the input signal so that high-dimensional geodesic filtering can be efficiently performed in linear time. Its computational cost is not affected by the choice of the filter parameters; and the resulting filters are the first to work on color images at arbitrary scales in real time, without resorting to subsampling or quantization. The adaptive manifolds compute the filter’s response at a reduced set of sampling points, and use these for interpolation at all input pixels, so that high-dimensional Euclidean filtering can be efficiently performed in linear time. We show that for a proper choice of sampling points, the total cost of the filtering operation is linear both in the number of pixels and in the dimension of the space in which the filter operates. As such, ours is the first high-dimensional filter with such a complexity. We present formal derivations for the equations that define our filter, providing a sound theoretical justification. Finally, we introduce a mathematical formulation for linear-time recursive filtering of non-uniformly sampled signals. This formulation enables, for the first time, geodesic edge-aware evaluation of arbitrary recursive infinite impulse response filters (not only low-pass), which allows practically unlimited control over the shape of the filtering kernel. By providing the ability to experiment with the design and composition of new digital filters, our method has the potential do enable a greater variety of image and video effects. The high-dimensional filters we propose provide the fastest performance (both on CPU and GPU) for a variety of real-world applications. Thus, our filters are a valuable tool for the image and video processing, computer graphics, computer vision, and computational photography communities.
18

Applications in Fixed Point Theory

Farmer, Matthew Ray 12 1900 (has links)
Banach's contraction principle is probably one of the most important theorems in fixed point theory. It has been used to develop much of the rest of fixed point theory. Another key result in the field is a theorem due to Browder, Göhde, and Kirk involving Hilbert spaces and nonexpansive mappings. Several applications of Banach's contraction principle are made. Some of these applications involve obtaining new metrics on a space, forcing a continuous map to have a fixed point, and using conditions on the boundary of a closed ball in a Banach space to obtain a fixed point. Finally, a development of the theorem due to Browder et al. is given with Hilbert spaces replaced by uniformly convex Banach spaces.
19

Non-uniformly distributed compression perpendicular to the grain in steel-CLT connections : Experimental and Numerical Analysis of bearing capacity and displacement behaviour / Non-uniformly distributed compressive loading perpendicular to the grain in steel-CLT connections : Experimental and Numerical Analysis of bearing capacity and displacement behaviour

Ncube, Noah, Sabaa, Stephen January 2019 (has links)
Previous studies have mainly focused on the behaviour of timber under uniformly distributed compression perpendicular to the grain (CPG) loads. However, there are many practical applications in which timber is loaded by non-uniformly distributed CPG loads. Different design and test codes like the Eurocode 5 (EC5), DIN 1052:2004, ASTM D143- 94 and EN-408:2010 only account for load configurations where timber is subjected to uniformly distributed loads. For specific uniformly distributed load (UDL) configurations the bearing capacity of timber (solid softwood timber or Glulam) in compression is adapted by using a load configuration factor (kc,90) according to EC5, the European code for design of timber structures. EC5 has no guidelines for cross-laminated timber (CLT) under UDL with the exception of the Austrian National Regulations for EC5. In this work, an experimental and numerical study on the bearing capacity and displacement behaviour of CLT subjected to non-uniformly distributed loading (NuDL) is conducted on eight different load configurations. A steel-CLT connection in which the CLT is partially loaded is used in this study. Finite element modelling, performed using the commercial software Abaqus CAE is used as the numerical simulation of the experimental study and is validated by experimental results. Load configuration factors (kc,90) from experimental results are compared with values from the Swedish CLT handbook (KL-Trähandbok). The outcome of the study shows that load configuration factor for NuDL cases is higher than for UDL cases. Hence, for same load configurations a lower CPG strength is required in NuDL than in UDL. Moreover, numerical results feature overall good congruence with the elastic phase of the experiments and have the potential to augment experiments in further understanding other complex steel-CLT connections
20

Étude de systèmes dynamiques avec perte de régularité / On loss of regularity in dynamical systems

Sedro, Julien 27 September 2018 (has links)
L'objet de cette thèse est le développement d'un cadre unifié pour étudier la régularité de certains éléments caractéristiques des dynamiques chaotiques (pression/entropie topologique, mesure de Gibbs, exposants de Lyapunov) par rapport à la dynamique elle même. Le principal problème technique est la perte de régularité venant de l'utilisation d'un opérateur de composition, l'opérateur de transfert, dont les propriétés spectrales sont intimement liées aux "éléments caractéristiques" ci-dessus. Pour surmonter ce problème, nous établissons un théorème de régularité par rapport aux paramètres pour des points fixes, dans un esprit proche du théorème des fonctions implicites de Nash Moser. Nous appliquons ensuite cette approche "point fixe" au problème de la réponse linéaire (régularité de la mesure invariante du système par rapport aux paramètres) pour une famille de dynamiques uniformément dilatantes. Dans un second temps, nous étudions la régularité du plus grand exposant de Lyapunov d'un produit aléatoire d'applications dilatantes, s'appuyant sur notre théorème de régularité et la théorie des contractions de cônes. Nous en déduisons la régularité par rapport aux paramètres de la mesure stationnaire, de la variance dans le théorème limite central, et d'autres quantités dynamiques d'intérêt. / The aim of this thesis is the development of a unified framework to study the regularity of certain characteristics elements of chaotic dynamics (Topological presure/entropy, Gibbs measure, Lyapunov exponents) with respect to the dynamic itself. The main technical issue is the regularity loss occuring from the use of a composition operator, the transfer operator, whose spectral properties are intimately connected to the aformentionned "characteristics elements". To overcome this issue, we developped a regularity theorem for fixed points (with respect to parameter), in the spirit of the implicit function theorem of Nash and Moser. We then apply this "fixed point" approach to the linear response problem (studying the regularity of the system invariant measure w.r.t parameters) for a family of uniformly expanding maps. In a second time, we study the regularity of the top characteristic exponent of a random prduct of expanding maps, building from our regularity theorem and cone contraction theory. We deduce from this regularity w.r.t parameters for the stationanry measure, the variance in the central limit theorem, and other quantities of dynamical interest.

Page generated in 0.0417 seconds