• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Online trajectory planning and observer based control

Anisi, David A. January 2006 (has links)
<p>The main body of this thesis consists of four appended papers. The first two consider different aspects of the trajectory planning problem, while the last two deal with observer design for mobile robotic and Euler-Lagrange systems respectively.</p><p>The first paper addresses the problem of designing a real time, high performance trajectory planner for aerial vehicles. The main contribution is two-fold. Firstly, by augmenting a novel safety maneuver at the end of the planned trajectory, this paper extends previous results by having provable safety properties in a 3D setting. Secondly, assuming initial feasibility, the planning method is shown to have finite time task completion. Moreover, in the second part of the paper, the problem of simultaneous arrival of multiple aerial vehicles is considered. By using a time-scale separation principle, one is able to adopt standard Laplacian control to this consensus problem, which is neither unconstrained, nor first order.</p><p>Direct methods for trajectory optimization are traditionally based on<i> a</i> <i>priori </i>temporal discretization and collocation methods. In the second paper, the problem of adaptive node distribution is formulated as a constrained optimization problem, which is to be included in the underlying nonlinear mathematical programming problem. The benefits of utilizing the suggested method for online trajectory optimization are illustrated by a missile guidance example.</p><p>In the third paper, the problem of active observer design for an important class of non-uniformly observable systems, namely mobile robotics systems, is considered. The set of feasible configurations and the set of output flow equivalent states are defined. It is shown that the inter-relation between these two sets may serve as the basis for design of active observers. The proposed observer design methodology is illustrated by considering a unicycle robot model, equipped with a set of range-measuring sensors.</p><p>Finally, in the fourth paper, a geometrically intrinsic observer for Euler-Lagrange systems is defined and analyzed. This observer is a generalization of the observer recently proposed by Aghannan and Rouchon. Their contractivity result is reproduced and complemented by a proof that the region of contraction is infinitely thin. However, assuming <i>a</i> <i>priori </i>bounds on the velocities, convergence of the observer is shown by means of Lyapunov's direct method in the case of configuration manifolds with constant curvature.</p>
42

Hopf Bifurcation from Infinity in Asymptotically Linear Autonomous Systems with Delay

Biglands, Adrian Unknown Date
No description available.
43

Studies of the Boundary Behaviour of Functions Related to Partial Differential Equations and Several Complex Variables

Persson, Håkan January 2015 (has links)
This thesis consists of a comprehensive summary and six scientific papers dealing with the boundary behaviour of functions related to parabolic partial differential equations and several complex variables. Paper I concerns solutions to non-linear parabolic equations of linear growth. The main results include a backward Harnack inequality, and the Hölder continuity up to the boundary of quotients of non-negative solutions vanishing on the lateral boundary of an NTA cylinder. It is also shown that the Riesz measure associated with such solutions has the doubling property. Paper II is concerned with solutions to linear degenerate parabolic equations, where the degeneracy is controlled by a weight in the Muckenhoupt class 1+2/n. Two main results are that non-negative solutions which vanish continuously on the lateral boundary of an NTA cylinder satisfy a backward Harnack inequality and that the quotient of two such functions is Hölder continuous up to the boundary. Another result is that the parabolic measure associated to such equations has the doubling property. In Paper III, it is shown that a bounded pseudoconvex domain whose boundary is α-Hölder for each 0&lt;α&lt;1, is hyperconvex. Global estimates of the exhaustion function are given. In Paper IV, it is shown that on the closure of a domain whose boundary locally is the graph of a continuous function, all plurisubharmonic functions with continuous boundary values can be uniformly approximated by smooth plurisubharmonic functions defined in neighbourhoods of the closure of the domain. Paper V studies  Poletsky’s notion of plurisubharmonicity on compact sets. It is shown that a function is plurisubharmonic on a given compact set if, and only if, it can be pointwise approximated by a decreasing sequence of smooth plurisubharmonic functions defined in neighbourhoods of the set. Paper VI introduces the notion of a P-hyperconvex domain. It is shown that in such a domain, both the Dirichlet problem with respect to functions plurisubharmonic on the closure of the domain, and the problem of approximation by smooth plurisubharmoinc functions in neighbourhoods of the closure of the domain have satisfactory answers in terms of plurisubharmonicity on the boundary.
44

On some results of analysis in metric spaces and fuzzy metric spaces

Aphane, Maggie 12 1900 (has links)
The notion of a fuzzy metric space due to George and Veeramani has many advantages in analysis since many notions and results from classical metric space theory can be extended and generalized to the setting of fuzzy metric spaces, for instance: the notion of completeness, completion of spaces as well as extension of maps. The layout of the dissertation is as follows: Chapter 1 provide the necessary background in the context of metric spaces, while chapter 2 presents some concepts and results from classical metric spaces in the setting of fuzzy metric spaces. In chapter 3 we continue with the study of fuzzy metric spaces, among others we show that: the product of two complete fuzzy metric spaces is also a complete fuzzy metric space. Our main contribution is in chapter 4. We introduce the concept of a standard fuzzy pseudo metric space and present some results on fuzzy metric identification. Furthermore, we discuss some properties of t-nonexpansive maps. / Mathematical Sciences / M. Sc. (Mathematics)
45

Online trajectory planning and observer based control

Anisi, David A. January 2006 (has links)
The main body of this thesis consists of four appended papers. The first two consider different aspects of the trajectory planning problem, while the last two deal with observer design for mobile robotic and Euler-Lagrange systems respectively. The first paper addresses the problem of designing a real time, high performance trajectory planner for aerial vehicles. The main contribution is two-fold. Firstly, by augmenting a novel safety maneuver at the end of the planned trajectory, this paper extends previous results by having provable safety properties in a 3D setting. Secondly, assuming initial feasibility, the planning method is shown to have finite time task completion. Moreover, in the second part of the paper, the problem of simultaneous arrival of multiple aerial vehicles is considered. By using a time-scale separation principle, one is able to adopt standard Laplacian control to this consensus problem, which is neither unconstrained, nor first order. Direct methods for trajectory optimization are traditionally based on a priori temporal discretization and collocation methods. In the second paper, the problem of adaptive node distribution is formulated as a constrained optimization problem, which is to be included in the underlying nonlinear mathematical programming problem. The benefits of utilizing the suggested method for online trajectory optimization are illustrated by a missile guidance example. In the third paper, the problem of active observer design for an important class of non-uniformly observable systems, namely mobile robotics systems, is considered. The set of feasible configurations and the set of output flow equivalent states are defined. It is shown that the inter-relation between these two sets may serve as the basis for design of active observers. The proposed observer design methodology is illustrated by considering a unicycle robot model, equipped with a set of range-measuring sensors. Finally, in the fourth paper, a geometrically intrinsic observer for Euler-Lagrange systems is defined and analyzed. This observer is a generalization of the observer recently proposed by Aghannan and Rouchon. Their contractivity result is reproduced and complemented by a proof that the region of contraction is infinitely thin. However, assuming a priori bounds on the velocities, convergence of the observer is shown by means of Lyapunov's direct method in the case of configuration manifolds with constant curvature. / QC 20101108
46

Statistical Inference

Chou, Pei-Hsin 26 June 2008 (has links)
In this paper, we will investigate the important properties of three major parts of statistical inference: point estimation, interval estimation and hypothesis testing. For point estimation, we consider the two methods of finding estimators: moment estimators and maximum likelihood estimators, and three methods of evaluating estimators: mean squared error, best unbiased estimators and sufficiency and unbiasedness. For interval estimation, we consider the the general confidence interval, confidence interval in one sample, confidence interval in two samples, sample sizes and finite population correction factors. In hypothesis testing, we consider the theory of testing of hypotheses, testing in one sample, testing in two samples, and the three methods of finding tests: uniformly most powerful test, likelihood ratio test and goodness of fit test. Many examples are used to illustrate their applications.
47

Théorie non linéaire du potentiel et équations quasilinéaires avec données mesures / Nonlinear potential theory and quasilinear equations with measure data

Nguyen, Quoc-Hung 25 September 2014 (has links)
Cette thèse concerne l’existence et la régularité de solutions d’équations non-linéaires elliptiques, d’équations paraboliques et d’équations de Hesse avec mesures, et les critères de l’existence de solutions grandes d’équations elliptiques et paraboliques non-linéaires. / This thesis is concerned to the existence and regularity of solutions to nonlinear elliptic, parabolic and Hessian equations with measure, and criteria for the existence of large solutions to some nonlinear elliptic and parabolic equations.

Page generated in 0.0282 seconds