• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 19
  • 19
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Search Strategies For Multiple Autonomous Agents

Sujit, P B 10 1900 (has links) (PDF)
No description available.
12

BRAIN-COMPUTER INTERFACE FOR SUPERVISORY CONTROLS OF UNMANNED AERIAL VEHICLES

Abdelrahman Osama Gad (17965229) 15 February 2024 (has links)
<p dir="ltr">This research explored a solution to a high accident rate in remotely operating Unmanned Aerial Vehicles (UAVs) in a complex environment; it presented a new Brain-Computer Interface (BCI) enabled supervisory control system to fuse human and machine intelligence seamlessly. This study was highly motivated by the critical need to enhance the safety and reliability of UAV operations, where accidents often stemmed from human errors during manual controls. Existing BCIs confronted the challenge of trading off a fully remote control by humans and an automated control by computers. This study met such a challenge with the proposed supervisory control system to optimize human-machine collaboration, prioritizing safety, adaptability, and precision in operation.</p><p dir="ltr">The research work included designing, training, and testing BCI and the BCI-enabled control system. It was customized to control a UAV where the user’s motion intents and cognitive states were monitored to implement hybrid human and machine controls. The DJI Tello drone was used as an intelligent machine to illustrate the application of the proposed control system and evaluate its effectiveness through two case studies. The first case study was designed to train a subject and assess the confidence level for BCI in capturing and classifying the subject’s motion intents. The second case study illustrated the application of BCI in controlling the drone to fulfill its missions.</p><p dir="ltr">The proposed supervisory control system was at the forefront of cognitive state monitoring to leverage the power of an ML model. This model was innovative compared to conventional methods in that it could capture complicated patterns within raw EEG data and make decisions to adopt an ensemble learning strategy with the XGBoost. One of the key innovations was capturing the user’s intents and interpreting these into control commands using the EmotivBCI app. Despite the headset's predefined set of detectable features, the system could train the user’s mind to generate control commands for all six degrees of freedom of adapting to the quadcopter by creatively combining and extending mental commands, particularly in the context of the Yaw rotation. This strategic manipulation of commands showcased the system's flexibility in accommodating the intricate control requirements of an automated machine.</p><p dir="ltr">Another innovation of the proposed system was its real-time adaptability. The supervisory control system continuously monitors the user's cognitive state, allowing instantaneous adjustments in response to changing conditions. This innovation ensured that the control system was responsive to the user’s intent and adept at prioritizing safety through the arbitrating mechanism when necessary.</p>
13

Diseño de nuevos algoritmos de guiado y navegación con evasión de colisiones para vehículos aéreos no tripulados.

Samaniego Riera, Franklin Eduardo 15 February 2021 (has links)
Tesis por compendio / [ES] Debido a la creciente popularidad sobre la variedad de los Vehículos No Tripulados tanto en el campo militar como en el comercial, y de sus capacidades para navegar por diversos entornos, ya sean terrestres, aéreos o marinos, se evidencia que la clásica planificación de trayectorias y movimientos bidimensionales 2D podría no ser suficiente en un futuro inmediato. De esta manera, se debe resaltar que el presente trabajo aborda el problema de los Vehículos Aéreos No Tripulados (UAVs) de ala fija. En este sentido, la necesidad de encontrar una trayectoria navegable en el espacio euclídeo 3D se hace cada vez más necesario. En el caso de los UAV, considerar su cinemática para generar trayectorias suaves en tres dimensiones puede tener un interés significativo para la navegación autónoma aérea. Finalmente, los beneficios adicionales que se pueden producir son importantes. La principal dificultad de este problema es que los vehículos aéreos de características no-holonómicas se ven obligados a avanzar sin la posibilidad de detenerse a través de trayectorias 3D con curvaturas limitadas. En este sentido, se ha investigado la manera de proporcionar una completa caracterización de trayectorias óptimas para UAVs con un radio de giro limitado que se mueve en el plano tridimensional a una velocidad constante. Para completar tales tareas, un planificador de trayectorias no sólo debe proporcionar rutas tridimensionales para alcanzar una posición de destino sin colisionar con obstáculos, sino también debe asegurar que tal trayectoria sea adecuada para los UAVs que poseen propiedades cinemáticas específicas. Por lo tanto, el desarrollo del trabajo ha completado la algoritmia que genera una trayectoria discreta tridimensional al definir un conjunto de puntos 3D, resultantes de una división del espacio euclídeo tridimensional de manera dinámica, determinando las mejores opciones de avance, evitando analizar cada espacio del entorno completo. De esta manera, partiendo de los puntos 3D resultantes de la planificación de trayectoria tridimensional, se ha generado una trayectoria en forma de curva suave construida en función de las limitaciones de giro del UAV (resaltando que es difícil asegurar que el camino resultante cumpla con las restricciones cinemáticas en las tres dimensiones simultáneamente). Finalmente, es importante destacar que a menudo las restricciones mencionadas se calculan secuencialmente y de forma bidimensional, sobre un par de dimensiones desacopladas, lo que limita la capacidad de optimización. Para todo ello, se ha desarrollado un algoritmo de suavizado para un planificador de trayectorias que considera las restricciones cinemáticas tridimensionales completas sin desacoplar las dimensiones. / [CA] Debut a la creixent popularitat sobre la varietat dels Vehicles No Tripulats tant en el camp militar com en el comercial, i de les seves capacitats per navegar per diversos entorns, ja siguin terrestres, aeris o marins, s'evidencia que la clàssica planificació de trajectòries i moviments bidimensionals 2D podria no ser suficient en un futur immediat. D'aquesta manera, s'ha de ressaltar que el present treball aborda el problema dels Vehicles Aeris No Tripulats (UAV) d'ala fixa. En aquest sentit, la necessitat de trobar una trajectòria navegable en l'espai euclidià 3D es fa cada vegada més necessari. En el cas dels UAV, considerar la seva cinemàtica per generar trajectòries suaus en tres dimensions pot tenir un interès significatiu per a la navegació autònoma aèria. Finalment, els beneficis addicionals que es poden produir són importants. La principal dificultat d'aquest problema és que els vehicles aeris de característiques no-holonómicas es veuen obligats a avançar sense la possibilitat de detenir-se a través de trajectòries 3D amb curvatures limitades. En aquest sentit, s'ha investigat la manera de proporcionar una completa caracterització de trajectòries òptimes per UAVs amb un radi de gir limitat que es mou en el pla tridimensional a una velocitat constant. Per completar aquestes tasques, un planificador de trajectòries no només ha de proporcionar rutes tridimensionals per assolir una posició de destinació sense col·lisionar amb obstacles, sinó també ha d'assegurar que tal trajectòria sigui adequada per als UAVs que posseeixen propietats cinemàtiques específiques. Per tant, el desenvolupament de la feina ha completat la algorísmia que genera una trajectòria discreta tridimensional a l'definir un conjunt de punts 3D, resultants d'una divisió de l'espai euclidià tridimensional de manera dinàmica, determinant les millors opcions d'avanç, evitant analitzar cada espai de l' entorn complet. D'aquesta manera, partint dels punts 3D resultants de la planificació de trajectòria tridimensional, s'ha generat una trajectòria en forma de corba suau construïda en funció de les limitacions de gir de l'UAV (ressaltant que és difícil assegurar que el camí resultant compleixi amb les restriccions cinemàtiques en les tres dimensions simultàniament). Finalment, és important destacar que sovint les restriccions esmentades es calculen seqöencialment i de forma bidimensional, sobre un parell de dimensions desacoblades, el que limita la capacitat d'optimització. Per tot això, s'ha desenvolupat un algoritme de suavitzat per a un planificador de trajectòries que considera les restriccions cinemàtiques tridimensionals completes sense desacoblar les dimensions. / [EN] Due to the growing popularity of the variety of Unmanned Vehicles in both the military and commercial fields, and their capabilities to navigate diverse environments, whether land, air or sea, it is evident that the classic two-dimensional 2D trajectory and motion planning may not be enough in the near future. Thus, it should be noted that this paper addresses the problem of fixed-wing Unmanned Aerial Vehicles (UAVs). In this sense, the need to find a navigable path in 3D Euclidean space becomes more and more necessary. In the case of UAVs, considering their kinematics to generate smooth trajectories in three dimensions may be of significant interest for autonomous air navigation. Finally, the additional benefits that can be produced are important. The main difficulty of this problem is that air vehicles with non-holonomic characteristics are forced to advance without the possibility of stopping through 3D trajectories with limited curvatures. In this regard, research has been conducted to provide a complete characterization of optimal trajectories for UAVs with a limited turning radius that move in the 3D plane at a constant speed. To complete such tasks, a path planner must not only provide three-dimensional paths to reach a target position without colliding with obstacles, but must also ensure that such a path is suitable for UAVs that possess specific kinematic properties. Therefore, the development of the work has completed the algorithm that generates a discrete three-dimensional path by defining a set of 3D points, resulting from a division of the three-dimensional Euclidean space in a dynamic way, determining the best forward options, avoiding to analyze each space of the whole environment. In this way, starting from the 3D points resulting from the three-dimensional path planning, a smooth curve path has been generated, built according to the UAV turning constraints (highlighting that it is difficult to ensure that the resulting path meets the kinematic constraints in the three dimensions simultaneously). Finally, it is important to note that often the constraints mentioned are calculated sequentially and in a two-dimensional shape, on a pair of decoupled dimensions, which limits the ability to optimize. For all this, a smoothing algorithm has been developed for a path planner that considers the complete three-dimensional kinematic constraints without decoupling the dimensions. / Este trabajo ha sido parcialmente financiado por el Gobierno de España a través del Ministerio de Economía y Competitividad bajo el proyecto de Investigación DP I2015−71443−R, y por la administración local de la Generalitat Valenciana a través de los proyectos GV /2017/029 y AICO/2019/055. El autor ha sido beneficiario de una beca otorgada por el Instituto de Fomento al Talento Humano (IFTH) (2015−AR2Q9209) a través del Gobierno de Ecuador. / Samaniego Riera, FE. (2021). Diseño de nuevos algoritmos de guiado y navegación con evasión de colisiones para vehículos aéreos no tripulados [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161274 / Compendio
14

UAV Group Autonomy In Network Centric Environment

Suresh, M 07 1900 (has links) (PDF)
It is a well-recognized fact that unmanned aerial vehicles are an essential element in today’s network-centric integrated battlefield environment. Compared to solo UAV missions, multiple unmanned aerial vehicles deployed in co-operative mode, offer many advantages that has motivated UAV researchers all over the world to evolve concept of operations that aims in achieving a paradigm shift from traditional ”dull” missions to perform ”dirty” and ”dangerous” missions. In future success of a mission will depend on interaction among UAV groups with no interaction with any ground entity. To reach this capability level, it is necessary for researchers, to first understand the various levels of autonomy and the crucial role that information and communication plays in making these autonomy levels possible. The thesis is in four parts: (i) Development of an organized framework to realize the goal of achieving fully autonomous systems. (ii) Design of UAV grouping algorithm and coordination tactics for ground attack missions. (iii) Cooperative network management in GPS denied environments. (iv) UAV group tactical path and goal re-plan in GPS denied wide area urban environments. This research thesis represents many first steps taken in the study of autonomous UAV systems and in particular group autonomy. An organized framework for autonomous mission control level by defining various sublevels, classifying the existing solutions and highlighting the various research opportunities available at each level is discussed. Significant contribution to group autonomy research, by providing first of its kind solution for UAV grouping based on Dubins’ path, establishing GPS protected wireless network capable of operating in GPS denied environment and demonstration of group tactical path and goal re-plan in a layered persistent ISR mission is presented. Algorithms discussed in this thesis are generic in nature and can be applied to higher autonomous mission control levels, involving strategic decisions among UAVs, satellites and ground forces in a network centric environment.
15

Jämförelse av punktmoln genererade med terrester laserskanner och drönar-baserad Structure-from-Motion fotogrammetri : En studie om osäkerhet och kvalitet vid detaljmätning och 3D-modellering / Comparison of Point Clouds Generated by Terrestrial Laser Scanning and Structure-from-Motion Photogrammetry with UAVs : A study on uncertainty and quality in detailed measurement and 3D modeling

Nyberg, Emil, Wolski, Alexander January 2024 (has links)
Fotogrammetri är en viktig metod för att skapa 3D-representationer av terräng och strukturer, men utmaningar kvarstår när det gäller noggrannheten på grund av faktorer som bildkvalitet, kamerakalibrering och positionsdata. Användningen av drönare för byggnadsdetaljmätning möjliggör snabb och kostnadseffektiv datainsamling, men noggrannheten kan påverkas av bildkvalitet och skuggning. Avhandlingen syftar till att jämföra noggrannheten och kvaliteten hos punktmoln genererade med två olika tekniker: terrester laserskanning (TLS) och struktur-från-rörelse (SfM) fotogrammetri med drönare. För att testa båda metodernas osäkerhet och noggrannhet vid detaljmätning av bostäder. Genom att utföra mätningar på en villa har data samlats in med både TLS och drönare utrustade med 48 MP kamera, samt georeferering med markstöd (GCP). SfM-punktmoln bearbetades med Agisoft Metashape. Jämförelser gjordes mellan SfM- och TLS-punktmoln avseende täckning, lägesskillnad och lägesosäkerhet. Genom att följa riktlinjer från HMK - Terrester Laserskanning och tillämpa HMK Standardnivå 3 säkerställs hög noggrannhet i mätningarna. Kontroll av lägesosäkerhet av båda punktmolnen resulterade i en lägesosäkerhet som understeg toleranser satta enligt HMK - Terrester laserskanner Standardnivå 3.  Kontrollen av lägesosäkerheten visade att kvadratiska medelfelet(RMSE) i plan och höjd var 0.011m respektive 0.007m för TLS-punktmolnet, och 0.02m respektive 0.015m för drönar-SfM-punktmolnet, vilket låg under toleransen enligt HMK- Terrester Detaljmätning 2021. Resultaten tyder på att Structure-from-Motion fotogrammetri med drönare kan generera punktmoln med god detaljrikedom, inte lika noggrann som med terrester laserskanner på sin lägsta inställning. TLS uppvisade mindre osäkerhet enligt kontrollen av lägesosäkerhet, ungefär en halvering av RMSE i både plan och höjd. I studien framgick det att TLS presterar sämre vid svåråtkomliga ytor med skymd sikt och ogynnsamma infallsvinklar, där effekten blir en lägre punkttäthet för punktmolnet. Vid gynnsamma förhållanden erbjuder TLS en högre noggrannhet och detaljnivå jämfört med SfM punktmoln. Enligt M3C2 punktmoln analys, med TLS punktmolnet som referens, antydde det att SfM punktmolnet genererade största felen vid takfot samt vid buskage. De större felen vid takfot tyder på att SfM presterar sämre gällande detaljnivå och fel vid buskageområdet varierar inte från det som dokumenterats om fotogrammetriska fel vid mappning av vegetation. SfM kan utföra en effektiv datainsamling för större samt svåråtkomliga ytor men kräver lång bearbetningstid med diverse hjälpmedel för att uppnå hög noggrannhet. TLS kräver istället en lång datainsamlingsprocess men kan generera ett detaljerat och noggrant punktmoln direkt utan långa bearbetningsprocesser. Val av metod styrs därmed baserat på specifika projektkrav. Långsiktiga implikationer inkluderar förbättrad effektivitet och säkerhet inom bygg- och anläggningsprojekt, samt potentialen för kostnadsbesparingar och mer detaljerade inspektioner. / Photogrammetry is a crucial method for creating 3D representations of terrain and structures, yet challenges remain regarding accuracy due to factors such as image quality, camera calibration, and positional data. The use of drones for building detail measurements enables rapid and cost-effective data collection, but accuracy can be affected by image quality and shading. This thesis aims to compare the accuracy and quality of point clouds generated using two different techniques: terrestrial laser scanning (TLS) and Structure-from-Motion (SfM) photogrammetry with drones. The objective is to test the uncertainty and accuracy of both methods in residential surveying. Data collection was performed on a villa using both TLS and a drone equipped with a 48 MP camera, along with georeferencing with ground control points (GCP). SfM point clouds were processed with Agisoft Metashape. Comparisons were made between SfM and TLS point clouds in terms of coverage, positional difference, and positional uncertainty. By following guidelines from HMK - Terrester laserskanning 2021 and applying HMK Standard Level 3, high measurement accuracy was ensured. Positional uncertainty checks of both point clouds resulted in positional uncertainty within tolerances set by HMK - Terrestrial Laser Scanning Standard Level 3. The positional uncertainty, with a sample of 41 points showed that the root mean square error (RMSE) in plane and height was 0.011m and 0.007m respectively for the TLS point cloud, and 0.02m and 0.015m for the drone-SfM point cloud, both within the tolerance according to HMK - Terrestrial Detail Measurement 2021. The results suggest that Structure-from-Motion photogrammetry with drones can generate point clouds with good detail, although not as accurate as terrestrial laser scanning at its lowest setting. TLS showed less uncertainty according to the positional uncertainty check, with approximately half the RMSE in both plan and height. The study found that TLS performs worse on difficult-to-access surfaces with obstructed views and unfavorable angles, resulting in lower point cloud density. Under favorable conditions, TLS offers higher accuracy and detail compared to SfM point clouds. According to M3C2 point cloud analysis, using the TLS point cloud as a reference, SfM point clouds showed the largest errors at eaves and shrubbery. The larger errors at eaves indicate that SfM performs worse in terms of detail level, and errors in the shrubbery area are consistent with documented photogrammetric errors in vegetation mapping. SfM can effectively collect data for larger and difficult-to-access areas but requires extensive processing time with various aids to achieve high accuracy. Conversely, TLS requires a long data collection process but can generate a detailed and accurate point cloud directly without lengthy processing. The choice of method thus depends on specific project requirements. Long-term implications include improved efficiency and safety in construction and infrastructure projects, as well as potential cost savings and more detailed inspections.
16

Distributed management and coordination of UAV swarms based on infrastructureless wireless networks

Wubben, Jamie 26 October 2023 (has links)
[ES] Los Vehículos Aéreos no Tripulados (o drones) ya han demostrado su utilidad en una gran variedad de aplicaciones. Hoy en día, se utilizan para fotografía, cinematografía, inspecciones y vigilancia, entre otros. Sin embargo, en la mayoría de los casos todavía son controlados por un piloto, que como máximo suele estar volando un solo dron cada vez. En esta tesis, tratamos de avanzar en paso más allá en esta tecnología al permitir que múltiples drones con capacidad para despegue y aterrizaje vertical trabajen de forma sincronizada, como una sola entidad. La principal ventaja de realizar vuelos en grupo, comúnmente denominado enjambre, es que se pueden realizar tareas más complejas que utilizando un solo dron. De hecho, un enjambre permite cubrir más área en el mismo tiempo, ser más resistente, tener una capacidad de carga más alta, etc. Esto puede habilitar el uso de nuevas aplicaciones, o una mejor eficiencia para las aplicaciones existentes. Sin embargo, una parte clave es que los miembros del enjambre deben organizarse correctamente, ya que, durante el vuelo, diferentes perturbaciones pueden provocar que sea complicado mantener el enjambre como una unidad coherente. Una vez que se pierde esta coherencia, todos los beneficios previamente mencionados de un enjambre se pierden también. Incluso, aumenta el riesgo de colisiones entre los elementos del enjambre. Por lo tanto, esta tesis se centra en resolver algunos de estos problemas, proporcionando un conjunto de algoritmos que permitan a otros desarrolladores crear aplicaciones de enjambres de drones. Para desarrollar los algoritmos propuestos hemos incorporado mejoras al llamado ArduSim. Este simulador nos permite simular tanto la física de un dron como la comunicación entre drones con un alto grado de precisión. ArduSim nos permite implementar protocolos y algoritmos (bien probados) en drones reales con facilidad. Durante toda la tesis, ArduSim ha sido utilizado ampliamente. Su utilización ha permitido que las pruebas fueran seguras, y al mismo tiempo nos permitió ahorrar mucho tiempo, dinero y esfuerzo de investigación. Comenzamos nuestra investigación sobre enjambres asignando posiciones aéreas para cada dron en el suelo. Suponiendo que los drones están ubicados aleatoriamente en el suelo, y que necesitan alcanzar una formación aérea deseada, buscamos una solución que minimice la distancia total recorrida por todos los drones. Para ello se empezó con un método de fuerza bruta, pero rápidamente nos dimos cuenta de que, dada su alta complejidad, este método funciona mal cuando el número de drones aumenta. Por lo tanto, propusimos una heurística. Como en todas las heurísticas, se realizó un compromiso entre complejidad y precisión. Al simplificar el problema, encontramos que nuestra heurística era capaz de calcular una solución muy rápidamente sin aumentar sustancialmente la distancia total recorrida. Además, implementamos el algoritmo de Kuhn-Munkres (KMA), un algoritmo que ha demostrado proporcionar la respuesta exacta (es decir, reducir la distancia total recorrida) en el menor tiempo posible. Después de muchos experimentos, llegamos a la conclusión de que nuestra heurística es más rápida, pero que la solución proporcionada por el KMA es ligeramente más eficiente. En particular, aunque la diferencia en la distancia total recorrida es pequeña, el uso de KMA reduce el número de trayectorias de vuelo que se cruzan entre sí, lo cual es una métrica importante para las siguientes propuestas.[...] / [CA] Els vehicles aeris no tripulats (o drons) ja han demostrat la seua utilitat en una gran varietat d'aplicacions. Avui dia, s'utilitzen per a fotografia, cinematografia, inspeccions i vigilància, entre altres. No obstant això, en la majoria dels casos encara són controlats per un pilot, que com a màxim sol controlar el vol d'un sol dron cada vegada. En aquesta tesi, tractem d'avançar un pas més enllà en aquesta tecnologia, en permetre que múltiples drons amb capacitat per a l'enlairament i l'aterratge vertical treballen de forma sincronitzada, com una sola entitat. El principal avantatge de realitzar vols en grup, comunament denominats eixam, és que es poden fer tasques més complexes que utilitzant un sol dron. De fet, un eixam permet cobrir més àrea en el mateix temps, ser més resistent, tenir una capacitat de càrrega més alta, etc. Això pot habilitar l'ús de noves aplicacions, o una millor eficiència per a les aplicacions existents. No obstant això, una punt clau és que els membres de l'eixam han d'organitzar-se correctament, ja que, durant el vol, diferents pertorbacions poden provocar que siga complicat mantenir l'eixam com una unitat coherent. Una vegada que es perd aquesta coherència, tots els beneficis prèviament esmentats d'un eixam es perden també. Fins i tot, augmenta el risc de col·lisions entre els elements de l'eixam. Per tant, aquesta tesi se centra a resoldre alguns d'aquests problemes, proporcionant un conjunt d'algorismes que permeten a altres desenvolupadors crear aplicacions d'eixams de drons. Per a desenvolupar els algorismes proposats hem incorporat millores a l'anomenat ArduSim. Aquest simulador ens permet simular tant la física d'un dron com la comunicació entre drons amb un alt grau de precisió. ArduSim ens permet implementar protocols i algorismes (ben provats) en drons reals amb facilitat. Durant tota la tesi, ArduSim s'ha utilitzat àmpliament. El seu ús ha permès que les proves foren segures, i al mateix temps ens va permetre estalviar molt de temps, diners i esforç d'investigació. Per tant, es va utilitzar ArduSim per a cada bloc de construcció que vam desenvolupar. Comencem la nostra recerca sobre eixams assignant posicions aèries per a cada dron en terra. Suposant que els drons estan situats aleatòriament en terra i que necessiten assolir la formació aèria desitjada, cerquem una solució que minimitze la distància total recorreguda per tots els drons. Per a això, es va començar amb un mètode de força bruta, però ràpidament ens vam adonar que, atesa l'alta complexitat, aquest mètode funciona malament quan el nombre de drons augmenta. Per tant, vam proposar una heurística. Com en totes les heurístiques, es va fer un compromís entre complexitat i precisió. En simplificar el problema, trobem que la nostra heurística era capaç de calcular una solució molt ràpidament sense augmentar substancialment la distància total recorreguda. A més, vam implementar l'algorisme de Kuhn-Munkres (KMA), un algorisme que ha demostrat proporcionar la resposta exacta (és a dir, reduir la distància total recorreguda) en el menor temps possible. Després de molts experiments, arribem a la conclusió que la nostra heurística és més ràpida, però que la solució proporcionada pel KMA és lleugerament més eficient. En particular, encara que la diferència en la distància total recorreguda és xicoteta, l'ús de KMA redueix el nombre de trajectòries de vol que s'encreuen entre si, la qual cosa és una mètrica important per a les propostes següents.[...] / [EN] Unmanned Aerial Vehicles (UAVs) have already proven to be useful in many different applications. Nowadays, they are used for photography, cinematography, inspections, and surveillance. However, in most cases they are still controlled by a pilot, who at most is flying one UAV at a time. In this thesis, we try to take this technology one step further by allowing multiple Vertical Take-off and Landing (VTOL) UAVs to work together as one entity. The main advantage of this group, commonly referred to as a swarm, is that it can perform more complex tasks than a single UAV. When organized correctly, a swarm allows for: more area to be covered in the same time, more resilience, higher load capability, etc. A swarm can lead to new applications, or a better efficiency for existing applications. A key part, however, is that they should be organized correctly. During the flight, different disturbances will make it complicated to keep the swarm as one coherent unit. Once this coherency is lost, all the previously mentioned benefits of a swarm are lost as well. Even worse, the chance of a hazard increases. Therefore, this thesis focuses on solving some of these issues by providing a baseline of building blocks that enable other developers to create UAV swarm applications. In order to develop these building blocks, we improve a multi-UAV simulator called ArduSim. This simulator allows us to simulate both the physics of a UAV, and the communication between UAVs with a high degree of accuracy. This is a crucial part because it allows us to deploy (well tested) protocols and algorithms on real UAVs with ease. During the entirety of this thesis, ArduSim has been used extensively. It made testing safe, and allowed us to save a lot of time, money and research effort. We started by assigning airborne positions for each UAV on the ground. Assuming that the UAVs, are placed randomly on the ground, and that they need to reach a desired aerial formation, we searched for a solution that minimizes the total distance travelled by all the UAVs. We started with a brute-force method, but quickly realized that, given its high complexity, this method performs badly when the number of UAVs grows. Hence, we created a heuristic. As for all heuristics, a trade-off was made between complexity and accuracy. By simplifying the problem, we found that our heuristic was able to calculate a solution very quickly without increasing the total distance travelled substantially. Furthermore, we implemented the \ac{KMA}, an algorithm that has been proven to provide the exact answer (i.e. minimal total distance travelled) in the shortest time possible. After many experiments, we came to the conclusion that our heuristic is faster, but that the solution provided by the \ac{KMA} is slightly better. In particular, although the difference in total distance travelled is small, the \ac{KMA} reduces the numbers of flight paths crossing each other, which is an important metric in our next building block. Once we developed algorithms to assign airborne positions to each UAV on the ground, we started developing algorithms to take off all those UAVs. The objective of these algorithms is to reduce the time it takes for all the UAVs to reach their aerial position, while ensuring that all UAVs maintain a safe distance. The easiest solution is a sequential take-off procedure, but this is also the slowest approach. Hence, we improved it by first proposing a semi-sequential and later a semi-simultaneous take-off procedure. With this semi-simultaneous take-off procedure, we are able to reduce the takeoff time drastically without introducing any risk to the aircraft. [..] / Wubben, J. (2023). Distributed management and coordination of UAV swarms based on infrastructureless wireless networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/198887
17

Generación de maniobras suaves en el espacio 3D

Vanegas Zabala, Gloria Isabel 10 March 2024 (has links)
Tesis por compendio / [ES] El desarrollo tecnológico en la creación de trayectorias que permitan navegación libre de colisiones de Vehículos Autónomos (AVs) ha sido un objetivo constante de estudio debido a su fuerte interés científico y tecnológico en las últimas tres décadas. Las diferentes clases de AVs, ya sean Vehículos Aéreos no Tripulados (UAVs), Vehículos Terrestres no Tripulados (UGVs) o Vehículos Submarinos no Tripulados (UUVs), fomentan el desarrollo e implementación de trayectorias en el espacio tridimensional (3D). Un grupo especial de tecnología UAV está caracterizado por su ala fija, lo cual destaca características particulares en los AVs, debido a las restricciones no-holonómicas (un sistema que se describe mediante un conjunto de parámetros sujetos a restricciones diferenciales que no permiten que un vehículo se mueva de forma instantánea en cualquier dirección). En este sentido, las trayectorias navegables para estos UAVs no deben ser construidas como un conjunto de líneas rectas y círculos como en la gran mayoría de planificadores basados en primitivas, ya que no se garantiza una continuidad en su curvatura. Por lo tanto, las trayectorias construidas para esta rama tecnológica deben ser resueltas considerando las diferentes restricciones de maniobrabilidad del UAV, además de criterios de continuidad de curvas (el problema de continuidad se refiere principalmente a la continuidad geométrica, en términos de continuidad tangencial o de curvatura), suavidad en las curvas (una curva es suave si sus derivadas son continuas en el intervalo definido) y la seguridad en el vuelo (el control de seguridad garantiza que una trayectoria suave esté suficientemente lejos de los obstáculos). Finalmente, la cinemática del movimiento de los vehículos es otro factor que debe ser considerado mientras se suavizan las trayectorias. El presente trabajo está enfocado en la creación de trayectorias navegables en el espacio 3D, para UAVs de características no-holonómicas. La principal dificultad al solventar este problema se debe a la movilidad de esta clase de UAVs, pues se ven obligados a avanzar sin la posibilidad de detenerse a través de trayectorias 3D, realizando curvas con curvaturas limitadas (una máxima capacidad de giro a una velocidad definida). En consecuencia, se han desarrollado las herramientas necesarias para proporcionar una completa caracterización de trayectorias óptimas (con un radio de giro limitado) para UAVs que se mueven en el espacio 3D a una velocidad constante. Esta tesis se centra en la generación de caminos con trayectorias navegables en el espacio Euclídeo 3D, que contenga curvas con curvatura continua, considerando de esta manera las restricciones cinemáticas de los UAVs. Por tal motivo el objetivo principal es el desarrollo de la matemática necesaria para definir curvas clotoides en el espacio tridimensional, de modo que puedan ser utilizadas como primitivas en la generación de trayectorias. Finalmente, culminado el desarrollo de esta herramienta básica, y en función de los obstáculos del entorno, se puede completar una planificación y replanificación activa de movimientos. Para complementar la investigación, la verificación de las herramientas de planificación de trayectorias y del sistema, se han realizado simulaciones con la ayuda del entorno de desarrollo integrado (IDE) Matlab. De la misma forma, se ha preparado una plataforma de simulación de vuelo, tomando las virtudes del simulador de vuelo FlightGear 2018, y el modelo dinámico del avión de ala fija con restricciones no-holonómicas (Kadett 2400 ). En cuanto a la generación de trayectorias 3D, se han desarrollado simulaciones off-line, donde las acciones de control que debe ejecutar el avión para que siga la trayectoria calculada son definidas por: acceleración, brusquedad de curvatura y brusquedad de torsión. Por último, el enfoque de revisión bibliográfica presente en este documento se ha centrado en trabajos realizados que buscan cumplir con las tareas de planificación. / [CA] El desenvolupament tecnològic en la creació de trajectòries que permeten navegació lliure de col·lisions de Vehicles Autònoms (AVs) ha estat un objectiu constant d'estudi a causa del seu fort interés científic i tecnològic en les últimes tres dècades. Les diferents classes d'AVs, ja siguen Vehicles Aeris no Tripulats (UAVs), Vehicles Terrestres no Tripulats (UGVs) o Vehicles Submarins no Tripulats (UUVs), fomenten el desenvolupament i la implementació de trajectòries a l'espai tridimensional (3D). Un grup especial de tecnologia UAV està caracteritzat per la seua ala fixa, cosa que destaca característiques particulars en els AVs, a causa de les restriccions no-holonòmiques (un sistema que es descriu mitjançant un conjunt de paràmetres subjectes a restriccions diferencials que no permeten que un vehicle es menege de forma instantània en qualsevol direcció). En aquest sentit, les trajectòries navegables per a aquests UAVs no han de ser construïdes com un conjunt de línies rectes i cercles com a la gran majoria de planificadors basats en primitives, ja que no es garanteix una continuïtat en la seua curvatura. Per tant, les trajectòries construïdes per a aquesta branca tecnològica han de ser resoltes considerant les diferents restriccions de maniobrabilitat de l'UAV, a més de criteris de continuïtat de corbes (el problema de continuïtat es refereix principalment a la continuïtat geomètrica, en termes de continuïtat tangencial o de curvatura), suavitat a les corbes (una corba és suau si les seves derivades són contínues en l'interval definit) i la seguretat en el vol (el control de seguretat garanteix que una trajectòria suau estiga prou lluny dels obstacles). Finalment, la cinemàtica del moviment dels vehicles és un altre factor que cal considerar mentre se suavitzen les trajectòries. Aquest treball està enfocat a la creació de trajectòries navegables a l'espai 3D, per a UAVs de característiques no-holonòmiques. La principal dificultat en solucionar aquest problema es deu a la mobilitat d'aquesta classe de UAVs, ja que es veuen obligats a avançar sense la possibilitat d'aturarse a través de trajectòries 3D, fent corbes amb curvatures limitades (una màxima capacitat de gir a una velocitat definida). En conseqüència, s'han desenvolupat les ferramentes necessàries per proporcionar una completa caracterització de trajectòries òptimes (amb un radi de gir limitat) per a UAVs que es mouen al pla 3D a una velocitat constant. Aquesta tesi se centra en la generació de camins amb trajectòries navegables a l'espai Euclidià 3D, que continguen corbes amb curvatura contínua, considerant així les restriccions cinemàtiques dels UAVs. Per aquest motiu, l'objectiu principal és el desenvolupament de la matemàtica necessària per definir corbes clotoides a l'espai tridimensional, de manera que puguen ser utilitzades com a primitives en la generació de trajectòries. Finalment, culminat el desenvolupament d'aquesta ferramenta bàsica, i en funció dels obstacles de l'entorn, es pot completar una planificació i una replanificació activa de moviments. Per complementar la investigació, la verificació de les ferramentes de planificació de trajectòries i del sistema, s'han fet simulacions amb l'ajuda de l'entorn de desenvolupament integrat (IDE) Matlab. De la mateixa manera, s'ha preparat una plataforma de simulació de vol, prenent les virtuts del simulador de vol FlightGear 2018 i el model dinàmic de l'avió d'ala fixa amb restriccions no-holonòmiques (Kadett 2400). Pel que fa a la generació de trajectòries 3D, s'han desenvolupat simulacions off-line, on les accions de control que ha d'executar l'avió perquè seguisca la trajectòria calculada són definides per: acceleració, brusquedat de curvatura i brusquedat de torsió. Finalment, l'enfocament de revisió bibliogràfica present en aquest document s'ha centrat en treballs realitzats que busquen complir les tasques de planificació de trajectòria, planificació de moviment i construcció de corbes suaus per a AVs. / [EN] The technological development in the creation of trajectories that allow collision-free navigation of Autonomous Vehicles (AVs) has been a continuous target of study due to its strong scientific and technological interest in the last three decades. Different classes of AVs, whether, Unmanned Aerial Vehicles (UAVs), Unmanned Ground Vehicles (UGVs) or Unmanned Underwater Vehicles (UUVs), encourage the development and implementation of paths in three-dimensional (3D) space. A special group of UAV technology is characterized by its fixed wing, which emphasizes particular characteristics in UAVs, due to non-holonomic constraints (a system that is described by a set of parameters subject to differential constraints that do not allow a vehicle to move instantaneously in any direction). In this sense, navigable paths for these UAVs should not be built as a set of straight lines and circles as in the vast majority of primitive-based planners, since no continuity in their curvature is guaranteed. Therefore, the paths built for this technology branch must be solved considering the different maneuverability constraints of the UAV, in addition to curve continuity criteria (the continuity problem refers mainly to geometric continuity, in terms of tangential or curvature continuity), curve smoothness (a curve is smooth if its derivatives are continuous in the defined interval) and flight safety (safety control ensures that a smooth path is sufficiently far away from obstacles). Finally, the kinematics of vehicle motion is another factor to be considered while smoothing paths. This thesis work is focused on the creation of navigable paths in 3D space for UAVs with non-holonomic characteristics. The main difficulty in solving this problem is due to the mobility of this kind of UAVs, since they are forced to move without the possibility of stopping through 3D paths, performing curves with limited curvatures (a maximum turning capacity at a defined speed). Consequently, the needed tools have been developed to provide a complete characterization of optimal paths (with a limited turning radius) for UAVs moving in the 3D plane at a constant velocity. This thesis focuses on the generation of paths with navigable trajectories in 3D Euclidean space, containing curves with continuous curvature, thus considering the kinematic constraints of UAVs. Therefore, the main aim is the development of the necessary mathematics to define clothoid curves in the three-dimensional space, so that they can be used as primitives in the generation of paths. Finally, once the development of this basic tool has been completed, and depending on the obstacles in the environment, an active planning and replanning of movements can be completed. To complement the research, the verification of the path planning tools and the system, simulations have been performed with the help of the integrated development environment (IDE) Matlab. In the same way, a flight simulation platform has been prepared, taking the virtues of the FlightGear 2018 flight simulator, and the dynamic model of the fixed-wing aircraft with non-holonomic constraints (Kadett 2400 ). Regarding the generation of 3D paths, off-line simulations have been developed, where the control actions to be executed by the aircraft to follow the calculated path are defined by: acceleration, curvature sharpness and torsion sharpness. Finally, the literature review approach presented in this document has focused on works that address the tasks of path planning, motion planning and construction of smooth curves for AVs. Special care has been taken in the methodologies used, the variety of techniques, in addition to the advantages and disadvantages presented throughout the literature review. / The authors are grateful to the financial support of Spanish Ministry of Economy and European Union, grant DPI2016-81002-R (AEI/FEDER, UE). This work was also supported by the postdoctoral fellowship “APOSTD/2017/055” and the local administration “GV/2017/029” (Generalitat Valenciana, Conse- lleria d’Educació) Valencia - Spain. / Vanegas Zabala, GI. (2024). Generación de maniobras suaves en el espacio 3D [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/203122 / Compendio
18

Ecological aspects of plants inhabiting Mediterranean cliffs. Challenges and prospects of life in vertical environments

De Simone, Leopoldo 21 January 2021 (has links)
[ES] Esta tesis investiga las oportunidades, desafíos y limitaciones para la investigación en el campo de la ecología vegetal, en el contexto de los acantilados mediterráneos. En concreto, las especies casmofiticas, cuyos hábitats naturales se caracterizan por su acusada pendiente. Las laderas de las montañas de piedra caliza en la proximidad del mar, en la parte central y occidental del área mediterránea se consideran objetos de estudio. Los estudios se llevaron a cabo en los cinturones costeros de montaña de las costas del noroeste de Sicilia y la costa diánica en la Comunidad Valenciana. El primer capítulo, titulado "The complexity of environmental factors: cliff microclimate", investiga la variabilidad del microclima del acantilado en tres áreas diferentes en Sicilia y España, analizando las condiciones ambientales creadas por el acantilado en una escala muy estrecha. Se recopilaron seis conjuntos de datos independientes y comparables que recogen las principales variables meteorológicas a lo largo de un período total de 18 meses. La gama resultante de condiciones ambientales se compara por pares a lo largo de dos gradientes ambientales principales: la orientación del acantilado Norte/Sur y la proximidad al mar. Además, los rasgos foliares intraespecíficos se utilizan para estudiar la variación en la respuesta funcional de las plantas que viven en las orientaciónes opuestas en una misma área de investigación. La variación resultante se correlaciona con la influencia de las condiciones microclimáticas creadas por la pendiente y el aspecto en los rasgos de la planta antes mencionados. El segundo capítulo, titulado "Compositional data and analyses of areas and plant communities in the coastal cliffs of the Valencian Community (Spain)", presenta una ordenación de los sitios de estudio y de las especies vegetales que habitan en las zonas de acantilados del cinturón montañoso a lo largo de las costas de la región diánica en el este de España. El estudio reveló correlaciones significativas entre las unidades de vegetación y los sitios con referencia a la amplia orientación geográfica Norte/Sur. Sin embargo, fue poco informativo con respecto a revelar las principales diferencias observadas en la estructura del conjunto de plantas relacionadas con laa variaciones microtopográficas registradas en el conjunto de datos. En el tercer capítulo, titulado "UAV (drone) surveys for the study of plant- microtopography relationships and for the conservation of rare species", se describe la metodología propuesta para investigar entornos verticales poco accesibles. También se analizaron los desafíos y las oportunidades de la investigación ecológica vegetal en estas áreas tipicamente inaccesibles. Un primer conjunto de datos comprende un censo visual parcial y total de dos especies endémicas de acantilados estrechos en las áreas de estudio españolas e italianas. Mediante el uso de la fotogrametría aérea de corto alcance y el modelado 3D, fue posible estudiar los efectos de la micro topografía en la segregación de nichos, tanto a nivel de comunidad como de especie. Se utilizaron métodos de ordenación para correlacionar las especies endémicas seleccionadas y conjuntos de plantas con factores ambientales como el aspecto local y global, la pendiente y la distancia desde los bordes de los acantilados. En el cuarto capítulo, titulado "Distribution, ecology, conservation status and phylogeography of Pseudoscabiosa limonifolia, a paleo-endemic chasmophytic species from Sicily (Italy)", se analiza en detalle la estructura filogeográfica de una especie endémica de acantilados, Pseudoscabiosa limonifolia (Caprifoliaceae, subfamilia Dipsacaceae), también considerando las relaciones filogeográficas con sus taxones más próximos. Además, su distribución total se determinó mediante observaciones de campo, caracterizando su hábitat y evaluando su estado de conservación como Vulnerable de acuerdo con las / [CA] Aquesta tesi va investigar les oportunitats, reptes i limitacions per a la investigació en el camp de l'ecologia vegetal, en el context dels penya-segats mediterranis. En concret, les espècies casmofitiques, amb hàbitats naturals que es caracteritzen pel seu acusat pendent. Les vessants de les muntanyes de pedra calcària en la proximitat del mar, a la part central i occidental de l'àrea mediterrània són considerats objectes d'estudi. Els estudis es portaren a terme als cinturons costers de muntanya de les costes del nord de Sicília i la costa diànica a la Comunitat Valenciana. El primer capítol, titulat "The complexity of environmental factors: cliff microclimate", investiga la variabilitat del microclima del penya-segat en tres àrees diferents de Sicília i Espanya, analitzant les condicions ambientals creades pel penya-segat a una escala molt estreta. Es recopilen sis conjunts de dades independents i comparables que reconeixen les principals variables meteorològiques a llarg termini durant un període total de 18 mesos. Les dades resultants de les condicions ambientals es comparen per parells al llarg de dos gradients ambientals principals: l'orientació del penya-segat Nord/Sud i la proximitat a la mar. A més, els trests foliars intraespecífics s'utilitzen per estudiar la variació en la resposta funcional de les plantes que habiten orientacions oposades dins d'un àrea d' investigació. La variació resultant es correlaciona amb la influència de les condicions microclimàtiques creades pel vessant i els aspectos funcionals dels trets vegetals esmentats. El segon capítol, titulat "Compositional data and analyses of areas and plant communities in the coastal cliffs of the Valencian Community (Spain)", presenta una ordenació dels llocs d'estudi i de les espècies de plantes que habiten a les zones de penya- segats del cinturó de muntanya al llarg de les costes de la regió diànica de España. L'estudi va a revelar correlacions significatives entre les unitats de vegetació i els llocs amb referència a l'amplias orientació geogràfica Nord/Sud. No obstant aixó, va ser poc informatiu per poder revelar les diferències observades en l'estructura del conjunt de plantes relacionades amb les variacions microtopogràfiques registrades al conjunt de dades Al tercer capítol, titulat "UAV (drone) surveys for the study of plant-microtopography relationships and for the conservation of rare species", es descriu la metodologia proposada per a investigar entorns verticals poc accessibles. També es van analitzar els reptes i les oportunitats de la investigació ecològica vegetal en aquestes àrees normalment inaccesibles. Un primer conjunt de dades inclou el cens visual parcial i el total de dues espècies endèmiques de penya-segats a les àrees d'estudi espanyoles i italianes. Mitjançant la fotogrametria aèrea a curt abast i el modelat 3D, va ser possible estudiar els efectes de la microtopografia en la segregació de nínxols, tant a nivell comunitari com d'espècies. Es van utilitzar mètodes d'ordenació per a correlacionar les espècies endèmiques seleccionades i conjunts vegetals sencers amb factors ambientals com ara l'aspecte local i global, el pendent i la distància de les vores dels penya-segats. En el quart capítol, titulat "Distribution, ecology, conservation status and phylogeography of Pseudoscabiosa limonifolia, a paleo-endemic chasmophytic species from Sicily (Italy)", que s'analitza en detall l'estructura filogeográfica d'una espècie endèmica de penya-segats, Pseudoscabiosa limonifolia (Caprifoliaceae, subfamilia Dipsacaceae), considerant tambè les relacions filogeogràfiques amb els seus taxons més propers. A més, la seva distribució total es va determinar mitjançant observacions de camp, caracteritzant el seu hàbitat i avaluant el seu estat de conservació com a Vulnerable, d'acord amb les directrius de la llista roja de la UICN. / [EN] This thesis investigated opportunities, challenges and limitations for plant ecological research in the context of Mediterranean cliffs. In particular, chasmophytic species, whose natural habitats are very steep, limestone mountain slopes in the proximity of the sea, in the Central and Western part of the Mediterranean area are considered as study objects. Studies were carried out in the coastal mountain belts of both North-western Sicily and Dianic coasts in the Valencian Community (Spain). The first chapter, entitled "The complexity of environmental factors: cliff microclimate", investigates the variability of cliff microclimate in three different areas in Sicily and Spain, analysing the environmental conditions created by the cliff at very fine scale. Six independent and comparable datasets including the main meteorological variables were compiled in a total period of 18 months. The resulting spectra of environmental conditions are compared pairwise along two key environmental gradients: North/South cliff orientation and proximity to the sea. Intraspecific leaf traits are used in order to investigate variations in the functional response of plants living on opposite orientations. The resulting variation is then correlated with the influence of microclimatic conditions created by slope and functional aspects of the aforementioned plant traits. The second chapter, entitled "Compositional data and analyses of areas and plant communities in the coastal cliffs of the Valencian Community (Spain)", presents an ordination of the study sites and of the plant species inhabiting the cliff zones of the mountain belt along the coasts of the Dianic region in Eastern Spain. The study revealed significant correlations between the vegetation units and the sites with reference to the broad North/South geographical orientation. However, it was poorly informative in respect to reveal the major differences observed in the structure of the plant assemblage related to the micro- topographic variations recorded in the dataset. In the third chapter, entitled "UAV (drone) surveys for the study of plant- microtopography relationships and for the conservation of rare species", a proposed survey methodology for investigating inaccessible vertical environments is described. Challenges and opportunities of plant ecological research in these typically inaccessible areas were also analysed. A first set of data is comprised of partial and total visual census of two narrow endemic cliff species in the Spanish and Italian study areas. Through the use of aerial close- range photogrammetry and 3D modelling, it was possible to study the effects of micro-topography on niche segregation, both at community and species level. Ordination methods were used to correlate selected endemic species and entire plant assemblages to environmental factors such as local and global aspect, slope and distance from cliff edges. The fourth chapter, entitled "Distribution, ecology, conservation status and phylogeography of Pseudoscabiosa limonifolia, a paleo-endemic chasmophytic species from Sicily (Italy)", is addressed to analyse in details the phylogeographic structure of a cliff narrow endemic species, Pseudoscabiosa limonifolia (VAHL) DEVESA (Caprifoliaceae, subfamily Dipsacaceae), also taking in consideration its closest sister taxa. Furthermore, its total distribution was determined by field surveys, characterizing its habitat, and assessing its conservation status as Vulnerable according to IUCN red list guidelines. / De Simone, L. (2020). Ecological aspects of plants inhabiting Mediterranean cliffs. Challenges and prospects of life in vertical environments [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159877
19

Analysis Design and Implementation of Artificial Intelligence Techniques in Edge Computing Environments

Hernández Vicente, Daniel 27 March 2023 (has links)
Tesis por compendio / [ES] Edge Computing es un modelo de computación emergente basado en acercar el procesamiento a los dispositivos de captura de datos en las infraestructuras Internet of things (IoT). Edge computing mejora, entre otras cosas, los tiempos de respuesta, ahorra anchos de banda, incrementa la seguridad de los servicios y oculta las caídas transitorias de la red. Este paradigma actúa en contraposición a la ejecución de servicios en entornos cloud y es muy útil cuando se desea desarrollar soluciones de inteligencia artificial (AI) que aborden problemas en entornos de desastres naturales, como pueden ser inundaciones, incendios u otros eventos derivados del cambio climático. La cobertura de estos escenarios puede resultar especialmente difícil debido a la escasez de infraestructuras disponibles, lo que a menudo impide un análisis de los datos basado en la nube en tiempo real. Por lo tanto, es fundamental habilitar técnicas de IA que no dependan de sistemas de cómputo externos y que puedan ser embebidas en dispositivos de móviles como vehículos aéreos no tripulados (VANT), para que puedan captar y procesar información que permita inferir posibles situaciones de emergencia y determinar así el curso de acción más adecuado de manera autónoma. Históricamente, se hacía frente a este tipo de problemas utilizando los VANT como dispositivos de recogida de datos con el fin de, posteriormente, enviar esta información a la nube donde se dispone de servidores capacitados para analizar esta ingente cantidad de información. Este nuevo enfoque pretende realizar todo el procesamiento y la obtención de resultados en el VANT o en un dispositivo local complementario. Esta aproximación permite eliminar la dependencia de un centro de cómputo remoto que añade complejidad a la infraestructura y que no es una opción en escenarios específicos, donde las conexiones inalámbricas no cumplen los requisitos de transferencia de datos o son entornos en los que la información tiene que obtenerse en ese preciso momento, por requisitos de seguridad o inmediatez. Esta tesis doctoral está compuesta de tres propuestas principales. En primer lugar se plantea un sistema de despegue de enjambres de VANTs basado en el algoritmo de Kuhn Munkres que resuelve el problema de asignación en tiempo polinómico. Nuestra evaluación estudia la complejidad de despegue de grandes enjambres y analiza el coste computacional y de calidad de nuestra propuesta. La segunda propuesta es la definición de una secuencia de procesamiento de imágenes de catástrofes naturales tomadas desde drones basada en Deep learning (DL). El objetivo es reducir el número de imágenes que deben procesar los servicios de emergencias en la catástrofe natural para poder tomar acciones sobre el terreno de una manera más rápida. Por último, se utiliza un conjunto de datos de imágenes obtenidas con VANTs y relativas a diferentes inundaciones, en concreto, de la DANA de 2019, cedidas por el Ayuntamiento de San Javier, ejecutando un modelo DL de segmentación semántica que determina automáticamente las regiones más afectadas por las lluvias (zonas inundadas). Entre los resultados obtenidos se destacan los siguientes: 1- la mejora drástica del rendimiento del despegue vertical coordinado de una red de VANTs. 2- La propuesta de un modelo no supervisado para la vigilancia de zonas desconocidas representa un avance para la exploración autónoma mediante VANTs. Esto permite una visión global de una zona concreta sin realizar un estudio detallado de la misma. 3- Por último, un modelo de segmentación semántica de las zonas inundadas, desplegado para el procesamiento de imágenes en el VANTs, permite la obtención de datos de inundaciones en tiempo real (respetando la privacidad) para una reconstrucción virtual fidedigna del evento. Esta tesis ofrece una propuesta para mejorar el despegue coordinado de drones y dotar de capacidad de procesamiento de algoritmos de deep learning a dispositivos edge, más concretamente UAVs autónomos. / [CA] Edge Computing és un model de computació emergent basat a acostar el processament als dispositius de captura de dades en les infraestructures Internet of things (IoT). Edge computing millora, entre altres coses, els temps de resposta, estalvia amplades de banda, incrementa la seguretat dels serveis i oculta les caigudes transitòries de la xarxa. Aquest paradigma actua en contraposició a l'execució de serveis en entorns cloud i és molt útil quan es desitja desenvolupar solucions d'intel·ligència artificial (AI) que aborden problemes en entorns de desastres naturals, com poden ser inundacions, incendis o altres esdeveniments derivats del canvi climàtic. La cobertura d'aquests escenaris pot resultar especialment difícil a causa de l'escassetat d'infraestructures disponibles, la qual cosa sovint impedeix una anàlisi de les dades basat en el núvol en temps real. Per tant, és fonamental habilitar tècniques de IA que no depenguen de sistemes de còmput externs i que puguen ser embegudes en dispositius de mòbils com a vehicles aeris no tripulats (VANT), perquè puguen captar i processar informació per a inferir possibles situacions d'emergència i determinar així el curs d'acció més adequat de manera autònoma. Històricament, es feia front a aquesta mena de problemes utilitzant els VANT com a dispositius de recollida de dades amb la finalitat de, posteriorment, enviar aquesta informació al núvol on es disposa de servidors capacitats per a analitzar aquesta ingent quantitat d'informació. Aquest nou enfocament pretén realitzar tot el processament i l'obtenció de resultats en el VANT o en un dispositiu local complementari. Aquesta aproximació permet eliminar la dependència d'un centre de còmput remot que afig complexitat a la infraestructura i que no és una opció en escenaris específics, on les connexions sense fils no compleixen els requisits de transferència de dades o són entorns en els quals la informació ha d'obtindre's en aqueix precís moment, per requisits de seguretat o immediatesa. Aquesta tesi doctoral està composta de tres propostes principals. En primer lloc es planteja un sistema d'enlairament d'eixams de VANTs basat en l'algorisme de Kuhn Munkres que resol el problema d'assignació en temps polinòmic. La nostra avaluació estudia la complexitat d'enlairament de grans eixams i analitza el cost computacional i de qualitat de la nostra proposta. La segona proposta és la definició d'una seqüència de processament d'imatges de catàstrofes naturals preses des de drons basada en Deep learning (DL).L'objectiu és reduir el nombre d'imatges que han de processar els serveis d'emergències en la catàstrofe natural per a poder prendre accions sobre el terreny d'una manera més ràpida. Finalment, s'utilitza un conjunt de dades d'imatges obtingudes amb VANTs i relatives a diferents inundacions, en concret, de la DANA de 2019, cedides per l'Ajuntament de San Javier, executant un model DL de segmentació semàntica que determina automàticament les regions més afectades per les pluges (zones inundades). Entre els resultats obtinguts es destaquen els següents: 1- la millora dràstica del rendiment de l'enlairament vertical coordinat d'una xarxa de VANTs. 2- La proposta d'un model no supervisat per a la vigilància de zones desconegudes representa un avanç per a l'exploració autònoma mitjançant VANTs. Això permet una visió global d'una zona concreta sense realitzar un estudi detallat d'aquesta. 3- Finalment, un model de segmentació semàntica de les zones inundades, desplegat per al processament d'imatges en el VANTs, permet l'obtenció de dades d'inundacions en temps real (respectant la privacitat) per a una reconstrucció virtual fidedigna de l'esdeveniment. / [EN] Edge Computing is an emerging computing model based on bringing data processing and storage closer to the location needed to improve response times and save bandwidth. This new paradigm acts as opposed to running services in cloud environments and is very useful in developing artificial intelligence (AI) solutions that address problems in natural disaster environments, such as floods, fires, or other events of an adverse nature. Coverage of these scenarios can be particularly challenging due to the lack of available infrastructure, which often precludes real-time cloud-based data analysis. Therefore, it is critical to enable AI techniques that do not rely on external computing systems and can be embedded in mobile devices such as unmanned aerial vehicles (UAVs) so that they can capture and process information to understand their context and determine the appropriate course of action independently. Historically, this problem was addressed by using UAVs as data collection devices to send this information to the cloud, where servers can process it. This new approach aims to do all the processing and get the results on the UAV or a complementary local device. This approach eliminates the dependency on a remote computing center that adds complexity to the infrastructure and is not an option in specific scenarios where wireless connections do not meet the data transfer requirements. It is also an option in environments where the information has to be obtained at that precise moment due to security or immediacy requirements. This study consists of three main proposals. First, we propose a UAV swarm takeoff system based on the Kuhn Munkres algorithm that solves the assignment problem in polynomial time. Our evaluation studies the takeoff complexity of large swarms and analyzes our proposal's computational and quality cost. The second proposal is the definition of a Deep learning (DL) based image processing sequence for natural disaster images taken from drones to reduce the number of images processed by the first responders in the natural disaster. Finally, a dataset of images obtained with UAVs and related to different floods is used to run a semantic segmentation DL model that automatically determines the regions most affected by the rains (flooded areas). The results are 1- The drastic improvement of the performance of the coordinated vertical take-off of a network of UAVs. 2- The proposal of an unsupervised model for the surveillance of unknown areas represents a breakthrough for autonomous exploration by UAVs. This allows a global view of a specific area without performing a detailed study. 3- Finally, a semantic segmentation model of flooded areas, deployed for image processing in the UAV, allows obtaining real-time flood data (respecting privacy) for a reliable virtual reconstruction of the event. This thesis offers a proposal to improve the coordinated take-off of drones, to provide edge devices with deep learning algorithms processing capacity, more specifically autonomous UAVs, in order to develop services for the surveillance of areas affected by natural disasters such as fire detection, segmentation of flooded areas or detection of people in danger. Thanks to this research, services can be developed that enable the coordination of large arrays of drones and allow image processing without needing additional devices. This flexibility makes our approach a bet for the future and thus provides a development path for anyone interested in deploying an autonomous drone-based surveillance and actuation system. / I would like to acknowledge the project Development of High-Performance IoT Infrastructures against Climate Change based on Artificial Intelligence (GLOBALoT). Funded by Ministerio de Ciencia e Innovación (RTC2019-007159-5), of which this thesis is part. / Hernández Vicente, D. (2023). Analysis Design and Implementation of Artificial Intelligence Techniques in Edge Computing Environments [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/192605 / Compendio

Page generated in 0.0753 seconds