• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 14
  • 1
  • Tagged with
  • 52
  • 33
  • 30
  • 24
  • 24
  • 18
  • 18
  • 14
  • 13
  • 13
  • 10
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

En noggrannhetsundersökning av fotogrammetrisk detaljmätning i stereo / A study of accuracy in photogrammetric measurement in stereo

Jansson, Andreas January 2013 (has links)
Det här examensarbetets syfte är att undersöka noggrannheten i fotogrammetrisk detaljmätning i stereo. Sedan tidigare finns det en tumregel som säger att noggrannheten i dessa mätningar är ungefär 1 pixel i plan och 1,5 i höjd. Det saknas en noggrannare undersökning av om så är fallet. Totalt har 62 punkter koordinatbestämts både fotogrammetriskt och via geodetiska fältmätningar. Resultaten från dessa mätningar har därefter jämförts. Punkterna finns i Jönköping, Norrköping och Skellefteå. De fotogrammetriska mätningarna har gjorts dels på Lantmäteriets standardbilder med 25 och 50 cm upplösning men också på mer högupplösta bilder med 6–12 cm upplösning. Varje punkt är mätt fem gånger fotogrammetriskt. I fält är de mätta tre gånger vardera med GNSS under 60 sekunder och med minst två timmars uppehåll mellan varje mätning. Därefter har medelvärden räknats fram. Dessa har jämförts och resultatet presenterar avvikelsen både i meter och i antal pixlar. Jag kom fram till att i plan är den radiella avvikelsen ungefär lika stor som en pixel av bildens upplösning, spannet ligger på 0,72–1,23 pixlar. Denna avvikelse verkar vara oberoende bildernas plats och upplösning. I höjd är avvikelserna däremot betydligt större och varierar mellan 0,42–2,44 pixlar. Att det skiljer så mycket i höjd har antagligen att göra med hur många markstödpunkter man har använt sig av i blocktrianguleringen. Arbetet beskriver även teorin bakom stereofotogrammetrin och förklarar kortfattat hur det går till att ta fram en stereomodell. / The purpose of this degree project is to study the accuracy in photogrammetric measurements in stereo. Since before there is a rule of thumb that the standard uncertainty in these kinds of measurements is about 1 pixel in plane and 1.5 in height. But there is no one who has done any deeper study regarding this before. A total of 62 points has been measured, both photogrammetric and geodetic in field. The results has then been compared. The points are located in Jönköping, Norrköping and Skellefteå. The photogrammetric measurements has been made both at Lantmäteriets standard pictures with a resolution of 25 or 50 cm and pictures with higher resolution between 6 and 12 cm. Every point is measured photogrammetrically five times. In the field they are measured three times each with GNSS during 60 seconds and at least two hours between each measurement. I have calculated the average results and compared them to each other. The results are presented both in meters and in pixels. I came to the conclusion that in plane the radial deviation is about one pixel of the pictures resolution, the range is 0.72–1.23 pixels. The deviation seems to be independent of location and resolution of the pictures. In height the deviations are significantly bigger and the range is 0.42–2.44 pixels. The reason for this, is that the big deviation may depend on how many ground support points that are used in the block triangulation. The degree project also describes the theory behind stereo photogrammetry and explains in short words the process to create a stereo model.
2

Outsourcing av UAS-data : Informationshantering av data insamlad viaUAS

Larsson, Jon, Jidling, Johan January 2014 (has links)
This reports purpose is to give a general view on how to handle information collectedthrough photogrammetry and laser scanning with the help of UAS. The report ismade in collaboration with WSP Group and will briefly describe howphotogrammetry and laser scanning, also known as Lidar, works and how those areused in the construction business today. Then the focus will be on how gathered datais handled today, how outsourcing of data should be approached and if there are anyconsequences if data is handled in the wrong way. Interviews have been made with allparts in the UAS business. That includes authorities as Transporstyrelsen,Försvarsmakten. Interviews have also been conducted with consultants that operatethese systems, distributors of the different systems and solicitor. What can been seenis that, today, outsourcing and cloud services are not used to a great extent andtherefore not many have felt the obligation to familiarize themselves with theregulations.Based on the interviews and studies of relevant laws the conclusion can be made that,even if the purpose is not to publish the material when you outsource, it should stillbe treated as a publication.The penalties, when material is handled in the wrong way, are usually up to one yearin prison but if there is severe mismanagement it can be a matter of national securityand can be classified as espionage. Then the penalties are much harder.
3

Kartering och klassificering av berg med fotogrammetri

Ivarsson, Jonas January 2020 (has links)
Metoder för insamling av geologisk information har under de senaste 25 åren inte ändrats särskilt mycket. Traditionellt har informationen samlats in genom kartering av bergmassan i fält utfört av en kartör utrustad med kompass, hammare, papper och penna. Framförallt så utvärderas och dokumenteras bergmassan strukturer och deras egenskaper. En utförlig kartering kräver direkt åtkomst till bergmassan vilket i många fall inte är möjligt på grund av säkerhetsrisk eller hinder. Under de senaste 10 åren har kartering med kontaktlösa metoder såsom fotogrammetri blivit allt mer populära. Utvecklingen av tekniken och fotogrammetriprogrammen har lett till att användare utan tidigare erfarenhet inom ämnet kan skapa skarpa modeller och punktmoln, utrustad enbart en kamera samt datorprogram. Modellerna och punktmolnen kan georefereras så att de är placerade rätt i världen, men även leder till att de blir skalenliga. Eftersom mycket geologisk kartering beror på spatial information kan karteringen utföras på de genererade 3D-modellerna. Tidigare utförda studier syftar på att metoden är snabb och ett alternativ när konventionell kartering inte kan utföras. Trots det har inte kartering med fotogrammetri tillämpats i någon större utsträckning inom stora infrastrukturprojekt i Sverige. Syftet med examensarbetet var framförallt att utvärdera hur användbart fotogrammetri kan vara för ett bergprojekt. Hur och vad kan levereras samt vilken kvalité det är på resultatet är frågorna som utvärderas i detta examensarbete. För att utvärdera karteringen med fotogrammetri har fyra fallstudier utförts på tre olika platser i Stockholm, Sverige. Två av fallstudierna utfördes i två tunnelsektioner i Henriksdals reningsverk och två fallstudier utfördes ovanjord på två oåtkomliga bergslänter. Ingen dyr eller svårhanterlig utrustning användes för att skapa fotogrammetrimodellerna. En kombination av kommersiell programvara och öppen källkod har använts i fallstudierna. Tunnlarna fotograferades med konsumentklassad digitalkamera monterad på stativ. Bergslänterna fotograferades med en drönare. Fotografierna tillsammans med kontrollpunkter utplacerade i området användes för att skapa fotogrammetrimodellerna som den digitala karteringen utfördes på. Därefter tillämpades flertalet metoder för att utvärdera parametrar såsom RQD, råhet, sprickgrupper, sprickorienteringar och uthållighet. För fallstudierna utförda i tunnlarna jämfördes resultatet från karteringen baserat på fotogrammetri med resultat från konventionell kartering. Karteringen och klassificering av berg med hjälp av fotogrammetri är utifrån utförda fallstudier ett användbart verktyg. De utvärderade parametrarna från den digitala karteringen stämmer väl överens med de från den konventionella. Med metoden kan en person med god bergkunskap leverera ett digitalt karteringsprotokoll med de flesta kritiska sprickegenskaperna som underlag för klassificering av bergmassa. Resultatet från fallstudierna har bekräftat att metoden är användbar i olika miljöer med olika rådande förhållanden och förutsättningar. Tidsåtgången för kartering med fotogrammetri har visat sig jämförbar med konventionell kartering i tunnelmiljö men avsevärt tidseffektivare på bergslänter. Med fotogrammetri har modeller med hög upplösning och spatial noggrannhet skapats. 1,05 mm/pixel är den högsta genomsnittliga markupplösningen som har uppnåtts. Med det i åtanke skulle modellerna lämpa sig väl som relationshandlingar och vidare analyser, till exempel volymberäkning av under- och överbrytning. Speciellt i bergbranschen som redan använder sig av 3D-projektering i stor utsträckning.
4

En jämförelse mellan TLS och UAV-fotogrammetri : Inmätning av hårdgjorda ytor

Cedergren, Lucas, Paakkonen, Richard January 2015 (has links)
At present day there are several different methods for measuring of paved surfaces. The most common methods today are measuring with a total station, the Global Navigation Satellite System (GNSS) and terrestrial laser scanning (TLS). Recently the development of unmanned aerial vehicles, known as drones, has increased exponentially and today there are several ways of using drones for measuring surfaces by photographing and laser scanning. This thesis contains a comparison between the methods terrestrial laser scanning (TLS), and unmanned aerial vehicle photogrammetry (UAV). The measurements have been applied on two different test surfaces, one of asphalt and one of gravel. The purpose of the comparison is to investigate whether the airborne photogrammetry is equivalent accurate in its height levels as the terrestrial laser scanning. For the comparison to be more extensive, these two methods have not only been compared in precision but also in the areas of ease of use and economy. The precision was analyzed by comparing the height levels in randomly placed control points on the test surfaces. This has been made possible by the creation of terrain models of test surfaces in the software Geo where a surface scan of the models have been implemented. With the help of surface control the height deviations in the control points have been calculated and from these deviations the precision of the airborne photogrammetry has been evaluated. The ease of use has been analyzed based on observations made and information gathered from experienced consultants for each technology. For the economic aspect the costs for each measurement method has been presented to get an overall picture of each measurement method costs. The work has been carried out on behalf of the consulting firm Bjerking AB. The goal is to be able to provide Bjerking with a recommendation for which technology is best suited for measuring of paved surfaces. The results of the survey show that the UAV varies by a mean of 11 mm on the surface of gravel and 2 mm on the surface of the asphalt. The final recommendation given is that the UAV is preferred for measurement of asphalt roads, because since the precision is equivalent to TLS, the method is safe
5

Utvärdering av höjdosäkerheten i digitala höjdmodeller framställda fotogrammetriskt med UAS

Svensson, Andreas, Zetterberg, Tim January 2013 (has links)
Digitala ytmodeller (Digital Surface Model – DSM) används ofta i geodetiskt sammanhang. DSM har länge skapats bland annat med hjälp av fotogrammetri där flygbilder har tagits med traditionella flygningar. Intresset tilltar nu för att framställa DSM med hjälp av obemannade flygfarkoster, så kallade UAS (Unmanned Aircraft System). Den största fördelen med UAS är att det går snabbt och enkelt att få den lilla flygfarkosten upp i luften för att ta flygbilder och framställa DSM kostnadseffektivt.Syftet med detta examensarbete var att undersöka vilken höjdosäkerhet som kan uppnås i DSM som framställts genom fotogrammetri med UAS. För att åstadkomma detta har två flygningar gjorts den 25 april 2013 med en Gatewing X100 över ett område i Grillby där cirka 350 flygbilder togs sammanlagt. Efter flygningarna mättes med en totalstation 16 kontrollprofiler in på olika terrängtyper över flygområdet enligt rekommendationer i SIS-TS 21145:2007 ”Statistisk provning av digital terrängmodell”.Från de två flygningarna som gjordes i Grillby framställdes två olika DSM i programvaran AgiSoft Photoscan. DSM importerades därefter till SBG Geo där höjdskillnaderna mellan kontrollprofilerna och DSM beräknades. Medelavvikelsen i höjd varierade mellan -0,112 m och 0,050 m för de olika provytorna. De provytor som systematiskt avvek från DSM var asfaltprofilerna, dessa låg konstant (ca 0,1 m) under DSM. Anledningen tros ligga i bildmatchningen i programvaran AgiSoft Photoscan.De DSM som framställdes i detta examensarbete uppfyllde kraven för klass 4 enligt SIS-TS 21144:2007 vilket innebär att max medelavvikelse i höjd får vara 0,15 m. Det innebär, enligt samma SIS-TS, att framställda DSM är lämpade som projekteringsunderlag för arbetsplan väg och systemhandling järnväg (i jämn terräng). / Digital Surface Models (DSM) is common used for geodetic measurement today. Digital surface models have been created for a long time using photogrammetry where aerial photographs have been taken with traditional flights. The interest to produce DSM using unmanned air vehicles (UAS) has increased lately. The main advantage of a UAS system is that it is quick and easy to get the little aircraft up in the air to take aerial photographs and produce DSM cost-effective.The aim of this thesis was to investigate the height of uncertainty that can be achieved in DSM created by photogrammetry using UAS. To achieve this two flights have been made the 25th of April 2013 with a Gatewing X100. The flights were made over an area in Grillby where approximately 350 aerial photographs in total were taken. After the flights 16 control profiles were measured with a total station on different terrain types over the flight area as recommended by the document SIS-TS 21145:2007 “Statistical testing of Digital Terrain Models”.From the two flights that were made in Grillby, two different DSM was produced in the software AgiSoft Photoscan. The DSM was imported to SBG Geo and height differences between the control profiles and the DSM were calculated. This resulted in height differences which ranged between -0.112 m and 0,050 m in the various sample surfaces. The sample surface that deviated most from the DSM was the asphalt profiles that deviated about -0.1 m. It was considered to be a systematic error, but the source of the systematic error has not been located among the measurements. The error is believed to instead be in the image matching done by AgiSoft Photoscan. The DSM created in this thesis is classified as class 4 in a table from SIS-TS 21144:2007 which means that the max mean difference in height inside the DSM is ±0,15 m. This shows us that the DSM created with photogrammetry using UAS is suited for both as material for planning in railway and road constructions and for visualization of the ground.
6

Jämförelse av metoder för att återskapa kameraparametrar i gamla flygbilder

Sääf, Erik January 2014 (has links)
Till miljöanalyser går det att använda ortofoton från olika år för att göra jämförelser och se förändringar i miljön. Lantmäteriet har ett arkiv med flygbilder från 1930 fram till nutid. Med hjälp av självkalibrering är det möjligt att skapa ortofoton av de äldsta av dessa bilder som saknar data gällande kamera. Data för kameran som använts är nödvändig för att skapa ortofoton. Syftet med studien är att undersöka metoder för att återskapa kameraparametrar för den inre orienteringen i gamla flygbilder från 1940-talet. Genom att undersöka vilka metoder som finns är det också möjligt att se vilken som lämpar sig bäst vid ortofotoframställning för bilder fotograferade före 1950. Studien har använt två områden; Eslöv och Kärna med omnejd. Dessa två områden består av 25 flygbilder vardera. Kontrollpunkter har mätts in för att fastställa en kvalitet i bilderna. Arbetet har utförts i Applicationsmaster, ett program från Trimble. Självkalibrering under blockutjämning har utförts på båda områdena där olika förutsättningar satts. Kvadratiskt medelvärde (RMS) i plan har fastställts för de olika utfallen och jämförts. De två bästa resultat från blockutjämning för Kärna har använts för att skapa slutliga ortofoton för att jämföras med ett modernt ortofoto. Blockutjämningen visar att självkalibrering med kamerakonstant och felteckningskurva ger bäst resultat. Att använda en kamerafil med kameraparametrar som självkalibrerats för ett annat område visade en liten skillnad. Om självkalibrering ej utförs på området ger kamerakonstant och felteckningskurva ett resultat som inte är långt ifrån sett till om endast kamerakonstant är tillgänglig. Jämfört med utgångsläget där endast kamerakonstant är tillgänglig syns dock att alla metoder som prövats ger ett förbättrat resultat. Lantmäteriet har en tolerans för historiska ortofoton i slutliga ortofotot som är ett RMS i plan på 2 m. Det ortofoto som skapats under arbetets gång har i plan ett RMS som är 1,2 m. Trots att ett fåtal kontrollpunkter har använts vid kontroll av slutligt ortofoto går det att säga att självkalibrering är en bra metod för att göra gamla flygbilder användbara för miljöanalyser. / In order to perform environmental analyses, it is possible to utilize orthophotos from different years to do comparisons and detect environmental changes over time. Lantmäteriet, the National Land Survey of Sweden, has archived aerial photographs since the year of 1930. With the help of self-calibration it is possible to produce orthophotos from these photographs which otherwise lack camera data. Camera data is necessary to produce orthophotos. The purpose of this study is to investigate different methods to re-create camera parameters for the interior orientation in old orthophotos from the 1940s. By investigating which methods that exist, it is possible to determine which one is the most viable in the production of archival orthophotos from photographs taken before 1950. This study has evaluated two areas, Eslöv and Kärna and the surrounding areas. These areas are covered by 25 aerial photographs. Ground control points have been used to determine the level of quality of the photographs. The two best results from the block adjustment for Kärna have been used to produce archival orthophotos, which has been used for comparison with new orthophotos. Lantmäteriet has a tolerance of 2 m root mean square (RMS) in level for archival orthophotos. Block adjustment has shown that performing self-calibration with the camera constant and information on lens distortion gives the best result. The study shows that all the different methods that have been tested gives an improvement in result compared to only having the camera constant and not performing self-calibration. The best orthophotos of this study achieved a RMS of 1.2 m in plane. Although a low number of check points were used for control of the final orthophoto, this study shows that self-calibration is a good method for making old photographs useful.
7

Fotogrammetri i en jämförelse med strukturerat ljus 3D-skanning / Short-range photogrammetry compared to structured-light 3D scanning

Persson, Ellenor January 2020 (has links)
On behalf of Umeå University, close-range photogrammetry and 3D scanning with structural light are investigated as methods to create 3D models of physical objects relevant to mechanical engineering. An experimental setup for photogrammetry is constructed and used to scan three different objects: one made of metal, one with different colours and one made of plastic. The objects selected for analysis are a metal bolt, a colourful cardboard box and a bicycle helmet in plastic. The 3D models measured by photogrammetry are compared to models created with a commercial 3D scanner, both visually and through taking measurements on the physical objects and comparing with measuring the same details in Autodesk Recap Photo and Shining 3D. The results show a good measurement accuracy for both technologies. The average deviation from the dimensions of the physical objects is between 1.1% and 2.2%. Both 3D surface imaging techniques work well for objects with distinct surface structure and varying geometric shapes, but have problems creating 3D models of dark and glossy objects with homogeneous surface. Photogrammetry is cost-effective and manages to reproduce colour and texture with high accuracy. However, the method is time-consuming and the quality of the results is unpredictable. In addition, the measurement accuracy can be questioned, since the calibration is performed manually by the user in the photogrammetry software. Structured light 3D scanning is a fast process and allows the model built-up and quality to be monitored in real time during the measurement. Visually, 3D scanning reproduces colour and texture with reasonable quality, but not as well as photogrammetry. Also here, the uncertainty in the tolerance analysis is large, since it is difficult to accurately place measurement points in the software. Both imaging techniques can be recommended for use in undergraduate education and student labs, given that a tutorial is provided and suitable scan objects are selected. / På uppdrag av Umeå universitet utförs en undersökning av fotogrammetri och strukturerat ljus 3D-skanning som arbetssätt för att skapa 3D-modeller av fysiska objekt relevanta inom maskinteknik. Syftet med arbetet var att fotogrammetri undersöks som arbetssätt för att skapa 3D-modeller av fysiska objekt från nära håll och där resultatet från fotogrammetrin jämförs med analys av samma objekt med en kommersiell 3D-skanner som använder strukturerat ljus tekniken. En experimentell uppställning för fotogrammetri konstrueras och används för att läsa av tre olika objekt: ett i metall, ett med olika färger och ett i plast. Objekten som väljs för analys är en metallbult, en ask i kartong och en cykelhjälm i plast. 3D-modellerna som avbildas med fotogrammetri jämförs med modeller skapad med en kommersiell 3D-skanner, både visuellt och genom att ta mått på de fysiska objekten och jämföra med mått på samma detaljer i programvarorna Autodesk Recap Photo och Shining 3D. Resultaten visar en bra måttriktighet för båda teknikerna. Snittavvikelsen från måtten på de fysiska objekten är mellan 1,1% och 2,2%. Båda arbetssätt för avbildning fungerar bra för objekt med struktur och varierande geometriska former, men har problem att skapa 3D-modeller av glansiga föremål och objekt med homogen yta. Fotogrammetri är kostnadseffektivt och klarar av att återge färg och textur med hög noggrannhet. Däremot är metoden tidskrävande och resultatets kvalitet är oförutsägbart. Måttriktigheten kan ifrågasättas, då kalibreringen utförs manuellt av användaren i programvaran för fotogrammetri. 3D-skanning med strukturerat ljus är tidseffektivt och har fördelen att modellens uppbyggnad och kvalitet kan följas i real-tid under mätningen. Visuellt återger 3D-skanning färg och textur med någorlunda rimlig kvalitet, men inte lika väl som fotogrammetri. Måttriktigheten kan även med detta arbetssätt ifrågasätts, då det är svårt att noggrant placera ut mätpunkter i programvaran. Det kan rekommenderas att använda metoderna i grundutbildningen om en lathund för arbetssätten skapas och om det i förväg väljs ut objekt som är lämpliga att läsas av.
8

Uppdatering av baskarta med UAS-fotogrammetri i del av Furuvik

Lundin, Martin, Erik, Danö January 2018 (has links)
Syftet med studien är att uppdatera Gävle kommuns baskarta för området Furuviks camping. Området har genomgått stora förändringar, bland annat har campingen flyttats på grund av ombyggnation av väg och järnväg. Genom användning av UAS och flygfotografering samt framställning av ortofotomosaik i programvaran PhotoScan samt kontrollmätningar i fält har baskartan uppdaterats. UAS är förkortningen för “unmanned aerial system” eller “obemannat flygsystem”. Idag används UAS-teknik i större utsträckning än tidigare för att ta fram underlag till kartframställning av olika kartprodukter. Användningen av UAS har visat sig vara både effektivt och billigt. Innan flygning kunde genomföras placerades flygsignaler ut med god spridning i terrängen. Flygsignalerna mättes in med Global Navigation Satellite System (GNSS) nätverks-real time kinematic (N-RTK). Detta gjordes i två omgångar för att undvika tidskorrelation hos satelliterna. När flygfotograferingen var färdig bearbetades bilderna i PhotoScan där blockutjämning samt georeferering genomfördes. Vid bearbetningen i PhotoScan upptäcktes att en del bilder blivit överexponerade pga. skiftande väderlek under dagen för flygningen. Dessa bilder gick därför inte att använda vid georeferering. Därefter användes ortofotomosaiken till kartering av de nytillkomna objekten i baskartan. Detta gjordes i ArcMap med hjälp av Gävle kommuns kartmanér. Slutligen genomfördes en kartkontroll på befintliga objekt samt digitaliserade objekt utifrån ortofotot för att säkerställa kvalitén av den uppdaterade baskartan. Jämförelser av Gävle kommuns objekt (kontrollpunkter 1–5) visade att alla punkter låg inom toleransen på 0,050 m i lägesosäkerhet. Jämförelsen av de objekt som digitaliserats med hjälp av ortofotmosaiken (kontrollpunkter 6–15) visade att två av punkterna marginellt överskred toleransen på 0,050 m. / The purpose of the study is to update the Gävle municipality's base map for the Furuvik campsite. The area has undergone major changes, among other things, the campsite has been moved due to road and rail rebuilding. Through the use of UAS and aerial photography as well as the production of orthophotomosaics in the PhotoScan software and control by field measurements the base map has been updated. UAS is the abbreviation for "unmanned aerial system". Today, UAS technology is used to a greater extent than before to provide basis for production of various map products. The use of UAS has proven to be both efficient and inexpensive. Before the flight was carried out, ground control targets were spread out well in the terrain. The ground control targets were measured with Global Navigation Satellite System (GNSS) network real-time kinematic (N-RTK). This was done in two rounds to avoid time correlation with the satellites. When aerial photography was completed the pictures were processed in PhotoScan where block smoothing and georeferencing were performed. During the processing of PhotoScan some images were overexposed due to the fact that changing weather conditions during the day of the flight. These pictures therefore failed to be used for georeferencing. Thereafter the orthophotomosaic was used to mapping the newly added objects in the base map. This was done in ArcMap using the base map of Gävle municipality. Finally a map control was made on existing objects and digitized items from the orthophotomosaic to ensure the quality of the updated base map. Comparisons of Gävle municipality objects (checkpoints 1-5) showed that all points were within the tolerance of 0.050 m in uncertainty. The comparison of the objects digitized by the orthophotomosaic (control points 6-15) showed that two of the points marginally exceeded the tolerance of 0.050 m.
9

UAS-noggrannhet i praktiken : En undersökning av dagens UAS-fotogrammetris noggrannhet / UAS-accuracy in practice : A study of UAS photogrammetric accuracy

Samani, Jakob January 2013 (has links)
Sammanfattning Undersökningens syfte är att förstå hur noggrann UAS-fotogrammetrin i dagsläget (2013) är.  Frågeställningarna som undersökningen utgick ifrån var: kan UAS-fotogrammetri i dagsläget ge precisa punkter med hjälp av att mäta in centrum av 1x1 meter utlagda plattor som kan ses i ortofoto?;  Kan det ge snarlik noggrannhet med pixelstorleken? samt Kan UAS-tekniken idag användas för att producera pålitliga höjdmodeller? För att uppnå syftet har en undersökning utförts med jämförelse på koordinater insamlade med totalstation och insamlade med UAS-fotogrammetriska metoder. Resultatet visade att medelfelet var drygt 1 pixel på plana koordinater samt på koordinater i höjd. Pixlarnas storlek var mellan 4.7-9.3 cm. Största felkällan ser ut att vara upplösningen på bilderna, men tekniken utvecklas fort. UAS-fotogrammetrin lever väl upp till frågeställningarnas förväntningar. / Abstract The purpose of the study is to understand what the accuracy of UAS photogrammetry today (2013) is. The study was based on the following questions: Can UAS photogrammetry today give precise points, measuring the centre of 1x1 meter plywood boards viewed from an orthophoto?; Can it give similar accuracy as the size of the pixels? And can UAS technology today be used to produce elevation models of good quality? To investigate these questions, a study has been made to compare coordinates collected from a total station and UAS photogrammetric methods. The results show that the standard error is approximately 1 pixel on flat coordinates and 1 pixel on elevated coordinates. The pixel size was between 4.7 and 9.3 cm. The biggest source of error seems to be the resolution on the pictures, but the technology develops quickly. The UAS photogrammetry method definitely meets the expectations of the questions.
10

Jämförelse av karteringsmetoder inför bergklassificering i tunnlar

Forsberg, Viktor, Granström, Filip January 2016 (has links)
Säkerhet är ständigt en primär fråga vid byggnation, detta innefattar även drivning av tunnlar. För att förhindra ras eller utglidning av block undersöks och klassificeras därför berget. Tunneln som undersöks i denna studie kostar ungefär 7000 kr/timme att driva. Därför finns det mycket pengar att spara på effektivisering av arbetsmoment, däribland kartering. I denna uppsats jämförs därför tre olika karteringsmetoder såsom konventionell kartering, fotogrammetri och laserskanning. De olika metodernas Q- och RMR-index jämförs sedan med hänsyn till de olika ingående parametrarna i klassificeringssystemen.    Syftet med studien är att studera om de nya karteringsmetoderna har några ekonomiska och/eller säkerhetsmässiga fördelar, samt även eventuella fördelar vad gäller lagring av bergets kvalitet och egenskaper i digitalt format. Därutöver även att studera om de nya teknikerna kan ersätta den konventionella karteringsmetoden helt eller till viss del.     Laserskanning och fotogrammetri kan inte helt ersätta dagens konventionella kartering. Detta på grund av att alla parametrar för klassificeringssystemen inte kan observeras/tolkas i de framställda digitala modellerna, utan måste göras på plats. Dock kan de digitala metoderna kombineras med den konventionella och därmed är en fullständig kartering och klassificering möjlig. Däremot finns andra fördelar med de digitala metoderna såsom digitala lagringsmöjligheter, detaljrika lättolkade modeller och att de är tidseffektiva över längre sträckor. / Safety is always a primary concern during construction, even during tunnel construction. To prevent rock fall or sliding of blocks the rock has to be examined and classified. The tunnel examined in this report costs about 7000 SEK/hour to construct. Therefore, a lot of money can be saved by streamlining the work process, including mapping of geological structures. In this paper three mapping methods are compared, such as traditional geological mapping, photogrammetry and laser scanning. The Q and RMR index from the three different methods are then compared with respect to the various parameters included in the classification systems.    The purpose of this study is to find out whether the new mapping methods have any financial and/or safety benefits, as well as any potential benefits in terms of storage in digital format of information about the rock quality and features, or not. The purpose is also to examine if the new technologies could replace the traditional mapping method fully or partially.     Laser scanning and photogrammetry cannot completely replace today’s conventional mapping. This is because some of the parameters are not possible to be observed and interpreted in the produced digital models, but must be done in situ. However, there are other benefits of the digital methods such as digital storage capabilities, detailed, easily interpretable models and that it takes less time to map large areas or long distances.

Page generated in 0.073 seconds