• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 14
  • 9
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 88
  • 82
  • 71
  • 43
  • 25
  • 22
  • 18
  • 15
  • 14
  • 13
  • 13
  • 12
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Airspeed estimation of aircraft using two different models and nonlinear observers

Roser, Alexander, Thunberg, Anton January 2023 (has links)
When operating an aircraft, inaccurate measurements can have devastating consequences. For example, when measuring airspeed using a pitot tube, icing effects and other faults can result in erroneous measurements. Therefore, this master thesis aims to create an alternative method which utilizes known flight mechanical equations and sensor fusion to create an estimate of the airspeed during flight. For validation and generation of flight data, a simulation model developed by SAAB AB, called ARES, is used.  Two models are used to describe the aircraft behavior. One of which is called the dynamic model and utilizes forces acting upon the aircraft body in the equations of motion. The other model, called the kinematic model, instead describes the motion with accelerations of the aircraft body. The measurements used are the angle of attack (AoA), side-slip angle (SSA), GPS velocities, and angular rates from an inertial measurement unit (IMU). The dynamic model assumes that engine thrust and aerodynamic coefficients are already estimated to calculate resulting forces, meanwhile the kinematic model instead uses body fixed accelerations from the IMU. These models are combined with filters to create estimations of the airspeed. The filters used are the extended Kalman filter (EKF) and unscented Kalman filter (UKF). These are combined with the two models to create in total four methods to estimate the airspeed.  The results show no major difference in the performance between the filters except for computational time, for which the EKF has the fastest. Further, the result show similar airspeed estimation performance between the models, but differences can be seen. The kinematic model manages to estimate the wind with higher details and to converge faster, compared to the dynamic model. Both models suffer from an observability problem. This problem entails that the aircraft needs to be maneuvered to excite the AoA and SSA in order for the estimation methods to evaluate the wind, which is crucial for accurate airspeed estimation. The robustness of the dynamic model regarding errors in engine thrust and aerodynamic coefficients are also researched, which shows that the model is quite robust against errors in these values.
62

Estimação de parâmetros de linhas de transmissão por meio de técnicas de identificação de sistemas. / Transmission line parameters estimation using system identification techniques.

Pereira, Ronaldo Francisco Ribeiro 29 July 2019 (has links)
O planejamento e o funcionamento do sistema elétrico de potência se baseiam na correta parametrização e caracterização de seus elementos, pois a correta parametrização dos sistemas de proteção permite uma atuação confiável e segura. Ademais, a correta caracterização dos parâmetros de elementos como as linhas de transmissão permite calcular o carregamento ótimo para determinados trechos do sistema interconectado com relação ao fluxo de potência, permitindo um melhor planejamento para expansão e instalação de reforços, dentre outros. Desta forma, foram desenvolvidas metodologias para estimação de parâmetros de sistemas de transmissão, que se baseiam na adoção de um modelo para o sistema e utilização de um método de resolução para se obter uma resposta, ou função de transferência, para as entradas e saídas deste modelo. No entanto, a maioria dos métodos existentes na literatura técnica apresenta certas limitações com relação à presença de ruído nos sinais de medição, ou dificuldade na relação existente entre as correntes longitudinais e as medições terminais, ou imprecisão do método de resolução do sistema de equações para determinada situação. Neste trabalho, foram utilizadas técnicas diferentes para a estimação de parâmetros de uma linha diretamente das medições das correntes e tensões terminais da linha em regime, sendo possível reduzir bastante o erro de estimação, pois não é necessário nenhum método de eliminação dos ruídos das medições. Desta forma, a corrente longitudinal é considerada como equivalente à última componente de corrente terminal, e a metodologia adotada apresenta erros pequenos de estimação independente do modelo adotado. Assim, modelam-se linhas de transmissão em cascata de circuitos ?, obtendo-se as medições ruidosas oriundas desta. Por fim, utiliza-se a metodologia baseada na teoria do Filtro de Kalman Unscented para eliminação do ruído nas grandezas medidas e para estimação dos parâmetros série da linha de transmissão. Através da ferramenta computacional Simulation and model-based design (Simulink), realizam-se a obtenção das medições, inclusão de ruído aleatório a estas e cálculos computacionais para estimação dos estados e parâmetros do sistema em regime permanente. / The planning and operation of a power system are based on the correct parameterization and characterization of its elements. By a correct parameterization of protection systems, a reliable and safe operation is allowed. The correct characterization of the parameters of transmission lines allows calculating the optimum power flow for the interconnected power system, allowing a better planning for expansion and installation of reinforcements, among others. In this sense, methodologies were developed for the estimation of transmission system parameters, which are based on the adoption of a model for the system and usage of a resolution method to obtain a response, or transfer function, for the inputs and outputs of the model. However, the most of existing methods in the technical literature presents certain limitations regarding presence of noise in the measurement signals, or difficulty regarding the relationship between the longitudinal currents and the terminal measurement signals, or imprecision of the solving method for the equations system. In this work, different techniques were applied for the estimation of line parameters directly from the measurements of the terminal currents and terminal voltages of the steady state line, being possible to greatly reduce the estimation error, since no extra method of eliminating measurements noise is necessary. In this way the longitudinal current is considered as equivalent to the last terminal current component, and the adopted methodology presents small estimation errors regardless of the adopted model. Thus, transmission lines are modeled by a pi cascade and noisy measurements are obtained. Finally, the methodology is based on the Unscented Kalman Filter theory for noise elimination in the measurements and for estimation of the transmission line longitudinal parameters. By the computational tool Simulink, measurements are obtained, random noise is inserted and computational calculations for estimation of the states and parameters of the system in steady state are done.
63

Distributed Sensing and Observer Design for Vehicles State Estimation

Bolandhemmat, Hamidreza 06 May 2009 (has links)
A solution to the vehicle state estimation problem is given using the Kalman filtering and the Particle filtering theories. Vehicle states are necessary for an active or a semi-active suspension control system, which is intended to enhance ride comfort, road handling and stability of the vehicle. Due to a lack of information on road disturbances, conventional estimation techniques fail to provide accurate estimates of all the required states. The proposed estimation algorithm, named Supervisory Kalman Filter (SKF), consists of a Kalman filter with an extra update step which is inspired by the particle filtering technique. The extra step, called a supervisory layer, operates on the portion of the state vector that cannot be estimated by the Kalman filter. First, it produces N randomly generated state vectors, the particles, which are distributed based on the Kalman filter’s last updated estimate. Then, a resampling stage is implemented to collect the particles with higher probability. The effectiveness of the SKF is demonstrated by comparing its estimation results with that of the Kalman filter and the particle filter when a test vehicle is passing over a bump. The estimation results confirm that the SKF precisely estimates those states of the vehicle that cannot be estimated by either the Kalman filter or the particle filter, without any direct measurement of the road disturbance inputs. Once the vehicle states are provided, a suspension control law, the Skyhook strategy, processes the current states and adjusts the damping forces accordingly to provide a better and safer ride for the vehicle passengers. This thesis presents a novel systematic and practical methodology for the design and implementation of the Skyhook control strategy for vehicle’s semi-active suspension systems. Typically, the semi-active control strategies (including the Skyhook strategy) have switching natures. This makes the design process difficult and highly dependent on extensive trial and error. The proposed methodology maps the discontinuous control system model to a continuous linear region, where all the time/frequency design techniques, established in the conventional control system theory, can be applied. If the semiactive control law is designed to satisfy ride and stability requirements, an inverse mapping offers the ultimate control law. The effectiveness of the proposed methodology in the design of a semi-active suspension control system for a Cadillac SRX 2005 is demonstrated by real-time road tests. The road tests results verify that the use of the newly developed systematic design methodology reduces the required time and effort in real industrial problems.
64

OFDM Systems Offset Estimation and Cancellation Using UKF and EKF

Mustefa, Dinsefa, Mebreku, Ermias January 2011 (has links)
Orthogonal Frequency Division Multiplexing (OFDM) is an efficient multi- carrier modulation scheme, which has been adopted for several wireless stan- dards. Systems employing this scheme at the physical layer are sensitive to frequency offsets and that causes Inter Carrier Interference (ICI) and degra- dation in overall system performance of OFDM systems. In this thesis work, an investigation on impairments of OFDM systems will be carried out. Anal- ysis of previous schemes for cancellation of the ICI will be done and a scheme for estimating and compensating the frequency offset based on Unscented Ka- man Filter (UKF) and Extended Kaman Filter (EKF) will be implemented. Analysis on how the UKF improves the Signal to Noise Ratio (SNR); and how well it tracks the frequency offset estimation under Additive White Gaussian Noise (AWGN) channel and flat fading Rayleigh channel will be carried on.
65

Distributed Sensing and Observer Design for Vehicles State Estimation

Bolandhemmat, Hamidreza 06 May 2009 (has links)
A solution to the vehicle state estimation problem is given using the Kalman filtering and the Particle filtering theories. Vehicle states are necessary for an active or a semi-active suspension control system, which is intended to enhance ride comfort, road handling and stability of the vehicle. Due to a lack of information on road disturbances, conventional estimation techniques fail to provide accurate estimates of all the required states. The proposed estimation algorithm, named Supervisory Kalman Filter (SKF), consists of a Kalman filter with an extra update step which is inspired by the particle filtering technique. The extra step, called a supervisory layer, operates on the portion of the state vector that cannot be estimated by the Kalman filter. First, it produces N randomly generated state vectors, the particles, which are distributed based on the Kalman filter’s last updated estimate. Then, a resampling stage is implemented to collect the particles with higher probability. The effectiveness of the SKF is demonstrated by comparing its estimation results with that of the Kalman filter and the particle filter when a test vehicle is passing over a bump. The estimation results confirm that the SKF precisely estimates those states of the vehicle that cannot be estimated by either the Kalman filter or the particle filter, without any direct measurement of the road disturbance inputs. Once the vehicle states are provided, a suspension control law, the Skyhook strategy, processes the current states and adjusts the damping forces accordingly to provide a better and safer ride for the vehicle passengers. This thesis presents a novel systematic and practical methodology for the design and implementation of the Skyhook control strategy for vehicle’s semi-active suspension systems. Typically, the semi-active control strategies (including the Skyhook strategy) have switching natures. This makes the design process difficult and highly dependent on extensive trial and error. The proposed methodology maps the discontinuous control system model to a continuous linear region, where all the time/frequency design techniques, established in the conventional control system theory, can be applied. If the semiactive control law is designed to satisfy ride and stability requirements, an inverse mapping offers the ultimate control law. The effectiveness of the proposed methodology in the design of a semi-active suspension control system for a Cadillac SRX 2005 is demonstrated by real-time road tests. The road tests results verify that the use of the newly developed systematic design methodology reduces the required time and effort in real industrial problems.
66

Nonlinear Estimation for Vision-Based Air-to-Air Tracking

Oh, Seung-Min 14 November 2007 (has links)
Unmanned aerial vehicles (UAV's) have been the focus of significant research interest in both military and commercial areas since they have a variety of practical applications including reconnaissance, surveillance, target acquisition, search and rescue, patrolling, real-time monitoring, and mapping, to name a few. To increase the autonomy and the capability of these UAV's and thus to reduce the workload of human operators, typical autonomous UAV's are usually equipped with both a navigation system and a tracking system. The navigation system provides high-rate ownship states (typically ownship inertial position, inertial velocity, and attitude) that are directly used in the autopilot system, and the tracking system provides low-rate target tracking states (typically target relative position and velocity with respect to the ownship). Target states in the global frame can be obtained by adding the ownship states and the target tracking states. The data estimated from this combination of the navigation system and the tracking system provide key information for the design of most UAV guidance laws, control command generation, trajectory generation, and path planning. As a baseline system that estimates ownship states, an integrated navigation system is designed by using an extended Kalman filter (EKF) with sequential measurement updates. In order to effectively fuse various sources of aiding sensor information, the sequential measurement update algorithm is introduced in the design of the integrated navigation system with the objective of being implemented in low-cost autonomous UAV's. Since estimated state accuracy using a low-cost, MEMS-based IMU degrades with time, several absolute (low update rate but bounded error in time) sensors, including the GPS receiver, the magnetometer, and the altimeter, can compensate for time-degrading errors. In this work, the sequential measurement update algorithm in smaller vectors and matrices is capable of providing a convenient framework for fusing the many sources of information in the design of integrated navigation systems. In this framework, several aiding sensor measurements with different size and update rates are easily fused with basic high-rate IMU processing. In order to provide a new mechanism that estimates ownship states, a new nonlinear filtering framework, called the unscented Kalman filter (UKF) with sequential measurement updates, is developed and applied to the design of a new integrated navigation system. The UKF is known to be more accurate and convenient to use with a slightly higher computational cost. This filter provides at least second-order accuracy by approximating Gaussian distributions rather than arbitrary nonlinear functions. This is compared to the first-order accuracy of the well-known EKF based on linearization. In addition, the step of computing the often troublesome Jacobian matrices, always required in the design of an integrated navigation system using the EKF, is eliminated. Furthermore, by employing the concept of sequential measurement updates in the UKF, we can add the advantages of sequential measurement update strategy such as easy compensation of sensor latency, easy fusion of multi-sensors, and easy addition and subtraction of new sensors while maintaining those of the standard UKF such as accurate estimation and removal of Jacobian matrices. Simulation results show better performance of the UKF-based navigation system than the EKF-based system since the UKF-based system is more robust to initial accelerometer and rate gyro biases and more accurate in terms of reducing transient peaks and steady-state errors in ownship state estimation. In order to estimate target tracking states or target kinematics, a new vision-based tracking system is designed by using a UKF in the scenario of three-dimensional air-to-air tracking. The tracking system can estimate not only the target tracking states but also several target characteristics including target size and acceleration. By introducing the UKF, the new vision-based tracking system presents good estimation performance by overcoming the highly nonlinear characteristics of the problem with a relatively simplified formulation. Moreover, the computational step of messy Jacobian matrices involved in the target acceleration dynamics and angular measurements is removed. A new particle filtering framework, called an extended marginalized particle filter (EMPF), is developed and applied to the design of a new vision-based tracking system. In this work, only three position components with vision measurements are solved in particle filtering part by applying Rao-Blackwellization or marginalization approach, and the other dynamics, including the target nonlinear acceleration model, with Gaussian noise are effectively handled by using the UKF. Since vision information can be better represented by probabilistic measurements and the EMPF framework can be easily extended to handle this type of measurements, better performance in estimating target tracking states will be achieved by directly incorporating non-Gaussian, probabilistic vision information as the measurement inputs to the vision-based tracking system in the EMPF framework.
67

Design Of Kalman Filter Based Attitude Determination Algorithms For A Leo Satellite And For A Satellite Attitude Control Test Setup

Kutlu, Aykut 01 October 2008 (has links) (PDF)
This thesis presents the design of Kalman filter based attitude determination algorithms for a hypothetical LEO satellite and for a satellite attitude control test setup. For the hypothetical LEO satellite, an Extended Kalman Filter based attitude determination algorithms are formed with a multi-mode structure that employs the different sensor combinations and as well as online switching between these combinations depending on the sensor availability. The performance of these different attitude determination modes are investigated through Monte Carlo simulations. New attitude determination algorithms are prepared for the satellite attitude control test setup by considering the constraints on the selection of the suitable sensors. Here, performances of the Extended Kalman Filter and Unscented Kalman Filter are investigated. It is shown that robust and sufficiently accurate attitude estimation for the test setup is achievable by using the Unscented Kalman Filter.
68

Modeling And Experimental Evaluation Of Variable Speed Pump And Valve Controlled Hydraulic Servo Drives

Caliskan, Hakan 01 September 2009 (has links) (PDF)
In this thesis study, a valveless hydraulic servo system controlled by two pumps is investigated and its performance characteristics are compared with a conventional valve controlled system both experimentally and analytically. The two control techniques are applied on the position control of a single rod linear actuator. In the valve controlled system, the flow rate through the actuator is regulated with a servovalve / whereas in the pump controlled system, two variable speed pumps driven by servomotors regulate the flow rate according to the needs of the system, thus eliminating the valve losses. To understand the dynamic behaviors of two systems, the order of the differential equations defining the system dynamics of the both systems are reduced by using the fact that the dynamic pressure changes in the hydraulic cylinder chambers become linearly dependent on leakage coefficients and cylinder chamber volumes above and below some prescribed cut off frequencies. Thus the open loop speed response of the pump controlled and valve controlled systems are defined by v second order transfer functions. The two systems are modeled in MATLAB Simulink environment and the assumptions are validated. For the position control of the single rod hydraulic actuator, a linear state feedback control scheme is applied. Its state feedback gains are determined by using the linear and linearized reduced order dynamic system equations. A linear Kalman filter for pump controlled system and an unscented Kalman filter for valve controlled system are designed for estimation and filtering purposes. The dynamic performances of both systems are investigated on an experimental test set up developed by conducting open loop and closed loop frequency response and step response tests. MATLAB Real Time Windows Target (RTWT) module is used in the tests for application purposes.
69

The Stabilization Of A Two Axes Gimbal Of A Roll Stabilized Missile

Hasturk, Ozgur 01 September 2011 (has links) (PDF)
Nowadays, high portion of tactical missiles use gimbaled seeker. For accurate target tracking, the platform where the gimbal is mounted must be stabilized with respect to the motion of the missile body. Line of sight stabilization is critical for fast and precise tracking and alignment. Although, conventional PID framework solves many stabilization problems, it is reported that many PID feedback loops are poorly tuned. In this thesis, recently introduced robot control method, proxy based sliding mode control, is adopted for the line of sight (LOS) stabilization. Before selecting the proposed method, adaptive neural network sliding mode control and fuzzy control are also implemented for comparative purposes. Experimental and simulation results show a satisfactory response of the proxy based sliding mode controller.
70

Implementierung eines Mono-Kamera-SLAM Verfahrens zur visuell gestützten Navigation und Steuerung eines autonomen Luftschiffes

Lange, Sven 21 February 2008 (has links) (PDF)
Kamerabasierte Verfahren zur Steuerung autonomer mobiler Roboter wurden in den letzten Jahren immer populärer. In dieser Arbeit wird der Einsatz eines Stereokamerasystems und eines Mono-Kamera-SLAM Verfahrens hinsichtlich der Unterstützung der Navigation eines autonomen Luftschiffes untersucht. Mit Hilfe von Sensordaten aus IMU, GPS und Kamera wird eine Positionsschätzung über eine Sensorfusion mit Hilfe des Extended und des Unscented Kalman Filters durchgeführt.

Page generated in 0.043 seconds