• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Chimney Flue Gas Flows : Flow Rate Measurements with Averaging Pitot Probes

Paavilainen, Janne January 2016 (has links)
Performance testing methods of boilers in transient operating conditions (start, stop and combustion power modulation sequences) need the combustion rate quantified to allow for the emissions to be quantified. One way of quantifying the combustion rate of a boiler during transient operating conditions is by measuring the flue gas flow rate. The flow conditions in chimneys of single family house boilers pose a challenge however, mainly because of the low flow velocity. The main objectives of the work were to characterize the flow conditions in residential chimneys, to evaluate the use of the Pitot-static method and the averaging Pitot method, and to develop and test a calibration method for averaging Pitot probes for low 𝑅𝑅𝑅𝑅.A literature survey and a theoretical study were performed to characterize the flow conditions in in single family house boiler chimneys. The flow velocities under normal boiler operating conditions are often below the requirements for the assumptions of non-viscous fluid justifying the use of the quadratic Bernoulli equation. A non-linear calibration coefficient is required to correct for these viscous effects in order to avoid significant measurement errors. The flow type in the studied conditions changes from laminar, across the transition regime, to fully turbulent flow, resulting in significant changes of the velocity profile during transient boiler operation. Due to geometrical settings occurring in practice measurements are often done in the hydrodynamic entrance region, where the velocity profiles are neither fully developed nor symmetrical. The predicted changes in velocity profiles are also confirmed experimentally in two chimneys.Several requirements set in ISO 10780 and ISO 3966 for Pitot-static probes are either met questionably or not met at all, meaning that the methods cannot be used as such. The main issues are the low flow velocity, viscous effects, and velocity profiles that change significantly during normal boiler operation. The Pitot-static probe can be calibrated for low 𝑅𝑅𝑅𝑅, but is not reliable because of the changing velocity profiles.The pressure averaging probe is a simple remedy to overcome the problems with asymmetric and changing velocity profiles, but still keeping low the irrecoverable pressure drop caused by the probe. However, commercial averaging probes are not calibrated for the characterized chimney conditions and the information available on the performance of averaging probes at low 𝑅𝑅𝑅𝑅 is scarce. A literature survey and a theoretical study were done to develop a method for calibrating pressure averaging probes for low 𝑅𝑅𝑒 flue gas flows in residential chimneys.The experimental part consists of constructing a calibration rig, testing the performance of differential pressure transducers, and testing a prototype pressure averaging probe. The results show good correlation over a wide operation range, but the low 𝑅𝑅𝑅𝑅 characteristics of the probe could not be identified due to instability in the chosen pressure transducer, and temperature correlation for one of the probes while not for the other. The differential pressures produced are close to the performance limitations of readily available transducers and it should be possible to improve the method by focusing on finding or building a suitable pressure transducer. The performance of the averaging method can be improved further by optimizing the geometry of the probe. Another way of reducing the uncertainty would be to increase the probe size relative to the conduit diameter to produce a higher differential pressure, at the expense of increasing the irrecoverable pressure drop.
2

Softwarové vybavení měřicí trati / Software for measuring track

Pikula, Stanislav January 2011 (has links)
The master's thesis summarizes the theory of flow measurement by differential pressure sensors, especially by Normalized Orifice, and summarizes theory concerning Averaging Pitot Tube. It is briefly described LabVIEW programming environment and flow measuring track for which the software was developed. The thesis describes creation of concept of program and in particular its final realization. The program provide observing actual events on measuring track, saving data to file, detail analysis of stored data and creation of measurement report. The main objective is to determine the Averaging Pitot Tube coefficient.
3

Medidor de vazão de água, tipo \"Pitot-Cole\", com configuração prismática hexagonal. / Water flow meter, as \"Pilot-Cole\", with hexagonal prismatic configuration.

Siqueira, Natally Annunciato 22 June 2018 (has links)
A medição de vazão é fundamental para a gestão de processos que envolvem fluidos. Em empresas de saneamento, contabilizar as entradas e saídas de água é essencial para gerir faturamentos e perdas. A vazão pode ser mensurada através de diversos instrumentos com diferentes princípios de aplicação. O Tubo Pitot Cole é capaz de determinar a vazão em tubulações através do diferencial de pressão. Trata-se se um equipamento inventado em 1732 por Henri Pitot para determinar a velocidade, e aperfeiçoado por Eduard Cole, em 1896, permitindo sua aplicação em tubulações. As principais vantagens são o baixo custo e fácil instalação, que pode ocorrer com a tubulação em carga. Em contrapartida, a fragilidade e complexidade das suas peças motivaram este trabalho: a elaboração de um instrumento simples e robusto para medir a vazão. Propõe-se a construção de um protótipo com tomadas de pressão instaladas em faces opostas de um prisma hexagonal e a avalia-se a sua viabilidade na medição de vazão. Os resultados mostraram-se promissores dada a estabilidade e forte correlação linear obtida no coeficiente de calibração. / Flow measurements are essential for processes management that include fluids. In water companies, measuring inlets and outlets of water is essential to manage revenue and water losses. The water flow can be measured through different instruments with different application principles. The Pitot Cole Tube is able to determine flow in pipes through the pressure differential. This device was invented in 1732 by Henri Pitot to determine fluid velocity and it was improved by Eduard Cole in 1896, allowing to apply the instrument in pipes. The main advantages are the low cost and easy installation, that may occur with the pipe under load. However, the fragility and complexity of its pieces motivated this study: the construction of a simple and robust instrument to measure the water flow. It is proposed the construction of a prototype with pressure plugs installed on opposite faces of a hexagonal prism, then evaluation of its effectiveness in water flow measurements. The results were promising given the stability obtained in the calibration coefficient.
4

Medidor de vazão de água, tipo \"Pitot-Cole\", com configuração prismática hexagonal. / Water flow meter, as \"Pilot-Cole\", with hexagonal prismatic configuration.

Natally Annunciato Siqueira 22 June 2018 (has links)
A medição de vazão é fundamental para a gestão de processos que envolvem fluidos. Em empresas de saneamento, contabilizar as entradas e saídas de água é essencial para gerir faturamentos e perdas. A vazão pode ser mensurada através de diversos instrumentos com diferentes princípios de aplicação. O Tubo Pitot Cole é capaz de determinar a vazão em tubulações através do diferencial de pressão. Trata-se se um equipamento inventado em 1732 por Henri Pitot para determinar a velocidade, e aperfeiçoado por Eduard Cole, em 1896, permitindo sua aplicação em tubulações. As principais vantagens são o baixo custo e fácil instalação, que pode ocorrer com a tubulação em carga. Em contrapartida, a fragilidade e complexidade das suas peças motivaram este trabalho: a elaboração de um instrumento simples e robusto para medir a vazão. Propõe-se a construção de um protótipo com tomadas de pressão instaladas em faces opostas de um prisma hexagonal e a avalia-se a sua viabilidade na medição de vazão. Os resultados mostraram-se promissores dada a estabilidade e forte correlação linear obtida no coeficiente de calibração. / Flow measurements are essential for processes management that include fluids. In water companies, measuring inlets and outlets of water is essential to manage revenue and water losses. The water flow can be measured through different instruments with different application principles. The Pitot Cole Tube is able to determine flow in pipes through the pressure differential. This device was invented in 1732 by Henri Pitot to determine fluid velocity and it was improved by Eduard Cole in 1896, allowing to apply the instrument in pipes. The main advantages are the low cost and easy installation, that may occur with the pipe under load. However, the fragility and complexity of its pieces motivated this study: the construction of a simple and robust instrument to measure the water flow. It is proposed the construction of a prototype with pressure plugs installed on opposite faces of a hexagonal prism, then evaluation of its effectiveness in water flow measurements. The results were promising given the stability obtained in the calibration coefficient.
5

Desenvolvimento de um circuito eletrônico experimental de anemômetro de fio quente /

Eguti, Carlos César Aparecido. January 2005 (has links)
Orientador: Edson Del Rio Vieira / Banca: Sérgio Said Mansur / Banca: Marcello Augusto F. de Medeiros / Resumo: Anemômetros de fio quente são sensíveis instrumentos capazes de medir variações de velocidade nos mais diversos tipos de escoamentos, sejam eles gasosos ou líquidos. Um delicado filamento metálico é aquecido por uma corrente elétrica a qual gera calor por efeito Joule e transfere parte dessa energia para o escoamento incidente, sendo esta troca de calor proporcional a velocidade do fluído, definindo assim o princípio básico de funcionamento da anemometria de fio quente. Quando este filamento é montado num circuito tipo ponte de Wheatstone, pode-se relacionar a troca de calor no filamento através da variação de sua resistência elétrica fazendo o uso de circuitos eletrônicos especiais. Este trabalho aborda os conceitos básicos da anemometria de fio quente, seus circuitos de controle principais e seus modos de operação, mostrando diferentes métodos para calibração de sondas de fio quente em escoamentos gasosos, além de apresentar uma metodologia completa para construção de um sistema básico de anemômetro de fio quente de temperatura constante. Dois dispositivos foram construídos e testados sendo avaliados quanto ao seu funcionamento e sua resposta em freqüência. / Abstract: Hot wire anemometers are sensitive instruments capable of measuring fluctuation of speed in many fluid flows, gaseous or liquid. A delicate metallic filament is heated by an electric current (Joule effect) and cooled by incident flow, this heat exchange is proportional of the fluid speed, defining the basic phenomenon of hot-wire anemometry. When this filament is mounted on an arm of Wheatstone bridge, the heat lost by the filament can be related its electric resistance when special electronic circuits are used. This work presents the concepts of hot-wire anemometry, its main control circuits and its operation mode, showing the basic methods for hot wire calibration with gaseous flows, besides presenting a complete methodology for construction of a basic constant temperature hot-wire anemometer system, based on the tests of two experimental circuits which are evaluated by electronic tests and its frequency response. / Mestre
6

Sklandytuvo atakos ir slydimo kampų matavimo metodų tyrimas / Research of measurements of glider’s attack and slip angle

Lapinskas, Vytautas 15 June 2011 (has links)
Baigiamajame magistro darbe atliekamas sklandytuvo atakos ir slydimo kampo matavimo metodų tyrimas. Pirmoje darbo dalyje apžvelgiami atakos kampo matuokliai: virvutė, pritvirtinta ant stiklinio gaubto, atakos – slydimo kampo matuoklis su vėjarodžiu ir Pitoto vamzdelio tipo daviklis. Davikliai palyginami, aprašomi jų privalumai ir trūkumai lyginant su kitais davikliais. Antroje dalyje aprašomi alfa ir beta kampų matavimo metodai: matavimas vamzdelio tipo davikliu ir metodas, kai nenaudojami specialūs atakos, slydimo kampo davikliai. Toliau apžvelgiami veiksniai, turintys įtakos matavimo tikslumui. Pateikiamos kelių vamzdelio tipo daviklių kalibravimo kreivės. Paskutinėje dalyje programa Matlab kuriamas matematinis-dinaminis sklandytuvo modelis. Modeliu, pagal nustatytas sąlygas, skaičiuojami atakos ir slydimo kampai, analizuojami grafikai. / The thesis made the glider’s attack and slip angle measurement methods for the investigation. The first part gives an overview of measuring devices of angle of attack and slip angle: The side string, attached to the side of the canopy, vane mounted AOA sensor, Pitot-tube type sensor. The sensors are compared, describes their advantages and disadvantages compared with other sensors. The second part describes the alpha and beta angle measurement methods: measurement with the tube-type sensor, and the method without using the specific attack, slip angle sensors. The following gives an overview of factors affecting the measurement accuracy. Several tube-type sensor calibration curves are presented. The last part of thesis presents development of mathematical – dynamic model of the glider using Matlab software. The model calculates the angle of attack and slip using set conditions of flight.
7

Desenvolvimento de um circuito eletrônico experimental de anemômetro de fio quente

Eguti, Carlos César Aparecido [UNESP] 16 December 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:23:39Z (GMT). No. of bitstreams: 0 Previous issue date: 2005-12-16Bitstream added on 2014-06-13T19:06:57Z : No. of bitstreams: 1 eguti_cca_me_ilha.pdf: 4013696 bytes, checksum: 9efc5c11950fccddb62667186e778ef2 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Anemômetros de fio quente são sensíveis instrumentos capazes de medir variações de velocidade nos mais diversos tipos de escoamentos, sejam eles gasosos ou líquidos. Um delicado filamento metálico é aquecido por uma corrente elétrica a qual gera calor por efeito Joule e transfere parte dessa energia para o escoamento incidente, sendo esta troca de calor proporcional a velocidade do fluído, definindo assim o princípio básico de funcionamento da anemometria de fio quente. Quando este filamento é montado num circuito tipo ponte de Wheatstone, pode-se relacionar a troca de calor no filamento através da variação de sua resistência elétrica fazendo o uso de circuitos eletrônicos especiais. Este trabalho aborda os conceitos básicos da anemometria de fio quente, seus circuitos de controle principais e seus modos de operação, mostrando diferentes métodos para calibração de sondas de fio quente em escoamentos gasosos, além de apresentar uma metodologia completa para construção de um sistema básico de anemômetro de fio quente de temperatura constante. Dois dispositivos foram construídos e testados sendo avaliados quanto ao seu funcionamento e sua resposta em freqüência. / Hot wire anemometers are sensitive instruments capable of measuring fluctuation of speed in many fluid flows, gaseous or liquid. A delicate metallic filament is heated by an electric current (Joule effect) and cooled by incident flow, this heat exchange is proportional of the fluid speed, defining the basic phenomenon of hot-wire anemometry. When this filament is mounted on an arm of Wheatstone bridge, the heat lost by the filament can be related its electric resistance when special electronic circuits are used. This work presents the concepts of hot-wire anemometry, its main control circuits and its operation mode, showing the basic methods for hot wire calibration with gaseous flows, besides presenting a complete methodology for construction of a basic constant temperature hot-wire anemometer system, based on the tests of two experimental circuits which are evaluated by electronic tests and its frequency response.
8

Matematicko - fyzikální analýza dynamického tlaku pro experimentální diferenciální komoru. / Mathematical-physical analysis of dynamic pressure for the experimental differentially pumped chamber

Lepltová, Kristýna January 2018 (has links)
This thesis is based on the series of scholarly article dedicated to the issue of pumping in the differential scanning chamber of an environmental scanning microscope. The thesis is based on Danilatos’s study where the pumping of the differential pumped chamber is solved by means of the Monte Carlo statistical method. The thesis analyzes gas flow in the experimental chamber using the Pipot tube. The analyses will be used for the design of the experimental chamber which will serve for the experimental evaluation of the flow results in the chamber using the continuum mechanics.
9

Airspeed estimation of aircraft using two different models and nonlinear observers

Roser, Alexander, Thunberg, Anton January 2023 (has links)
When operating an aircraft, inaccurate measurements can have devastating consequences. For example, when measuring airspeed using a pitot tube, icing effects and other faults can result in erroneous measurements. Therefore, this master thesis aims to create an alternative method which utilizes known flight mechanical equations and sensor fusion to create an estimate of the airspeed during flight. For validation and generation of flight data, a simulation model developed by SAAB AB, called ARES, is used.  Two models are used to describe the aircraft behavior. One of which is called the dynamic model and utilizes forces acting upon the aircraft body in the equations of motion. The other model, called the kinematic model, instead describes the motion with accelerations of the aircraft body. The measurements used are the angle of attack (AoA), side-slip angle (SSA), GPS velocities, and angular rates from an inertial measurement unit (IMU). The dynamic model assumes that engine thrust and aerodynamic coefficients are already estimated to calculate resulting forces, meanwhile the kinematic model instead uses body fixed accelerations from the IMU. These models are combined with filters to create estimations of the airspeed. The filters used are the extended Kalman filter (EKF) and unscented Kalman filter (UKF). These are combined with the two models to create in total four methods to estimate the airspeed.  The results show no major difference in the performance between the filters except for computational time, for which the EKF has the fastest. Further, the result show similar airspeed estimation performance between the models, but differences can be seen. The kinematic model manages to estimate the wind with higher details and to converge faster, compared to the dynamic model. Both models suffer from an observability problem. This problem entails that the aircraft needs to be maneuvered to excite the AoA and SSA in order for the estimation methods to evaluate the wind, which is crucial for accurate airspeed estimation. The robustness of the dynamic model regarding errors in engine thrust and aerodynamic coefficients are also researched, which shows that the model is quite robust against errors in these values.
10

Vliv výpadku primárních letových informací na bezpečnost a spolehlivost letadlové techniky / THE EFFECT OF PRIMARY FLIGHT INFORMATION FAILURE ON SAFETY AND RELIABILITY OF AIRCRAFT

Sklenář, Filip January 2021 (has links)
It is necessary to have certain flight information available to control the airplane. This information is usually displayed on flight instruments, which are located on the dashboard of the aircraft. In case of loss of indication or misleading indication of certain devices, control of the aircraft can be very complicated or even impossible. The dissertation deals with the issue of loss of information indication from aerometric instruments (especially from the airspeed indicator). The work contains research on the course of degradation of total pressure measurements using a Pitot tube. Based on this research, it is possible to design a new system for detecting blockage of the Pitot tube, which will increase aviation safety. The phenomenon described was investigated in a wind tunnel and in real conditions. Furthermore, the work defines instructions for the compilation of an emergency procedure, which the pilot could use in the event of a fault condition with aerometric instruments. The real possibilities of use were demonstrated on a Cessna 172SP aircraft during the validation experiment. The validation experiment proved the possibilities of the safe usage of the emergency procedure during flight. The final part of the work is focused on the evaluation of possible changes in the creation of reliability and safety analyzes with regard to the application of new knowledge based on this work.

Page generated in 0.0689 seconds