• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 14
  • 9
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 88
  • 82
  • 71
  • 43
  • 25
  • 22
  • 18
  • 15
  • 14
  • 13
  • 13
  • 12
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Implementierung eines Mono-Kamera-SLAM Verfahrens zur visuell gestützten Navigation und Steuerung eines autonomen Luftschiffes

Lange, Sven 09 December 2007 (has links)
Kamerabasierte Verfahren zur Steuerung autonomer mobiler Roboter wurden in den letzten Jahren immer populärer. In dieser Arbeit wird der Einsatz eines Stereokamerasystems und eines Mono-Kamera-SLAM Verfahrens hinsichtlich der Unterstützung der Navigation eines autonomen Luftschiffes untersucht. Mit Hilfe von Sensordaten aus IMU, GPS und Kamera wird eine Positionsschätzung über eine Sensorfusion mit Hilfe des Extended und des Unscented Kalman Filters durchgeführt.
72

Extended and Unscented Kalman Filtering for Estimating Friction and Clamping Force in Threaded Fasteners

Al-Barghouthi, Mohammad January 2021 (has links)
Threaded fasteners tend to break and loosen when exposed to cyclic loads or potent temperature variations. Additionally, if the joint is held tightly to the structure, distortion will occur under thermal expansion issues. These complications can be prevented by identifying and regulating the clamping force to an appropriate degree – adapted to the properties of the joint. Torque-controlled tightening is a way of monitoring the clamping force, but it assumes constant friction and therefore has low accuracy, with an error of around 17% - 43%.This thesis investigates if the friction and clamping force can be estimated using the Extended and Unscented Kalman filters to increase the precision of the torque-controlled methodology. Before the investigation, data were collected for two widely used tightening strategies. The first tightening strategy is called Continuous Drive, where the angular velocity is kept at a constant speed while torque is increased. The second strategy is TurboTight, where the angular velocity starts at a very high speed and decreases with increased torque. The collected data were noisy and had to be filtered. A hybrid between a Butterworth lowpass filter and a Sliding Window was developed and exploited for noise cancellation.The investigations revealed that it was possible to use both the Extended and Unscented Kalman filers to estimate friction and clamping force in threaded fasteners. In Continuous Drive tightening, both the EKF and UKF performed well - with an averagequality factor of 81.87% and 88.38%, and with an average error (at max torque) of 3.54% and 4.09%, respectively. However, the TurboTight strategy was much more complex and had a higher order of statistical moments to account for. Thus, the UKF outperformed the EKF with an average quality factor of 93.02% relative to 24.49%, and with an average error (at max torque) of 3.50% compared to 4.19%
73

Switching Neural Network Systems for Nonlinear Tracking

Ghimire, Manoj January 2018 (has links)
No description available.
74

Bayesian Identification of Nonlinear Structural Systems: Innovations to Address Practical Uncertainty

Alana K Lund (10702392) 26 April 2021 (has links)
The ability to rapidly assess the condition of a structure in a manner which enables the accurate prediction of its remaining capacity has long been viewed as a crucial step in allowing communities to make safe and efficient use of their public infrastructure. This objective has become even more relevant in recent years as both the interdependency and state of deterioration in infrastructure systems throughout the world have increased. Current practice for structural condition assessment emphasizes visual inspection, in which trained professionals will routinely survey a structure to estimate its remaining capacity. Though these methods have the ability to monitor gross structural changes, their ability to rapidly and cost-effectively assess the detailed condition of the structure with respect to its future behavior is limited.<div>Vibration-based monitoring techniques offer a promising alternative to this approach. As opposed to visually observing the surface of the structure, these methods judge its condition and infer its future performance by generating and updating models calibrated to its dynamic behavior. Bayesian inference approaches are particularly well suited to this model updating problem as they are able to identify the structure using sparse observations while simultaneously assessing the uncertainty in the identified parameters. However, a lack of consensus on efficient methods for their implementation to full-scale structural systems has led to a diverse set of Bayesian approaches, from which no clear method can be selected for full-scale implementation. The objective of this work is therefore to assess and enhance those techniques currently used for structural identification and make strides toward developing unified strategies for robustly implementing them on full-scale structures. This is accomplished by addressing several key research questions regarding the ability of these methods to overcome issues in identifiability, sensitivity to uncertain experimental conditions, and scalability. These questions are investigated by applying novel adaptations of several prominent Bayesian identification strategies to small-scale experimental systems equipped with nonlinear devices. Through these illustrative examples I explore the robustness and practicality of these algorithms, while also considering their extensibility to higher-dimensional systems. Addressing these core concerns underlying full-scale structural identification will enable the practical application of Bayesian inference techniques and thereby enhance the ability of communities to detect and respond to the condition of their infrastructure.<br></div>
75

Low Cost/ High Precision Flight Dynamics Estimation Using the Square-Root Unscented Kalman Filter

Paulsen, Trevor H. 02 October 2009 (has links) (PDF)
For over a decade, Brigham Young University's Microwave Earth Remote Sensing (MERS) team has been developing SAR systems and SAR processing algorithms. In order to create the most accurate image reconstruction algorithms, detailed aircraft motion data is essential. In 2008, the MERS team purchased a costly inertial measurement unit (IMU) coupled with a high precision global positioning system (GPS) from NovAtel, Inc. In order to lower the cost of obtaining detailed motion measurements, the MERS group decided to build a system that mimics the capability the NovAtel system as closely as possible for a much lower cost. As a first step, the same sensors and a simplified set of flight dynamics are used. This thesis presents a standalone motion sensor recording system (MOTRON), and outlines a method of utilizing the square-root Unscented Kalman filter (SR-UKF) to estimate aircraft flight dynamics, based on recorded flight data, as an alternative to the extended Kalman filter. While the results of the SR-UKF are not as precise as the NovAtel results, they approach the accuracy of the NovAtel system despite the simplified dynamics model.
76

Attitude Navigation using a Sigma-Point Kalman Filter in an Error State Formulation

Diamantidis, Periklis-Konstantinos January 2017 (has links)
Kalman filtering is a well-established method for fusing sensor data in order to accuratelyestimate unknown variables. Recently, the unscented Kalman filter (UKF) has beenused due to its ability to propagate the first and second moments of the probability distribution of an estimated state through a non-linear transformation. The design of ageneric algorithm which implements this filter occupies the first part of this thesis. The generality and functionality of the filter were tested on a toy example and the results are within machine accuracy when compared to those of an equivalent C++ implementation.Application of this filter to the attitude navigation problem becomes non-trivial when coupled to quaternions. Challenges present include the non-commutation of rotations and the dimensionality difference between quaternions and the degrees of freedom of the motion. The second part of this thesis deals with the formulation of the UKF in the quaternion space. This was achieved by implementing an error-state formulation of the process model, bounding estimation in the infinitesimal space and thus de-coupling rotations from non-commutation and bridging the dimensionality discrepancy of quaternions and their respective covariances.The attitude navigation algorithm was then tested using an IMU and a magnetometer.Results show a bounded estimation error which settles to around 1 degree. A detailed look of the filter mechanization process was also presented showing expected behavior for estimation of the initial attitude with error tolerance of 1 mdeg. The structure and design of the proposed formulation allows for trivially incorporating other sensors inthe estimation process and more intricate modelling of the stochastic processes present,potentially leading to greater estimation accuracy. / Kalman filtrering är en vältablerad metod for att sammanväga sensordata för att erhålla noggranna estimat av okända variabler. Nyligen har den typ av kalman filter som kallas unscented Kalman filter (UKF) ökat i populäritet pa grund av dess förmåga att propagera de första och andra momenten för sannolikhetsfördelningen för ett estimera tillstånd genom en ickelinjär transformation. Designen av en generisk algoritm som implementerar denna typ av filter upptar den första delen av denna avhandling. Generaliteten och funktionaliteten för detta filter testades på ett minimalt exempel och resultaten var identiska med de för en ekvivalent C++-implementation till den noggrannhet som tillåts av den nita maskinprecisionen. Användandet av detta filter för attitydnavigering blir icke-trivialt när det anvands forkvaternioner. De utmaningar som uppstar inkluderar att rotationer inte kommuterar och att de finns en skillnad i dimensionalitet mellan kvaternioner och antalet frihetsgrader i rörelsen. Den andra delen av denna avhandling behandlar formuleringen av ett UKF för ett tillstånd som inkluderar en kvaternion. Detta gjordes genom att implementera en så kallad error state-formulering av processmodellen, vilken begränsar estimeringen till ett innitesimalt tillstånd och därigenom undviker problemen med att kvaternionmultiplikation inte kommuterar och överbryggar skillnaden i dimensionalitet hos kvaternioner och deras motsvarande vinkelosäkerheter.Attitydnavigeringen testades sedan med hjälp av en IMU och en magnetometer.Resultaten visade ett begränsat estimeringsfel som ställer in sig kring 1 grad. Strukturen och designen av den föreslagna formuleringen möjliggör på ett rattframt satt tillägg av andra sensorer i estimeringsprocessen och mer detaljerad modellering av de stokastiska processerna, vilket potentiellt leder till högre estimering noggrannhet.
77

A Robust Dynamic State and Parameter Estimation Framework for Smart Grid Monitoring and Control

Zhao, Junbo 30 May 2018 (has links)
The enhancement of the reliability, security, and resiliency of electric power systems depends on the availability of fast, accurate, and robust dynamic state estimators. These estimators should be robust to gross errors on the measurements and the model parameter values while providing good state estimates even in the presence of large dynamical system model uncertainties and non-Gaussian thick-tailed process and observation noises. It turns out that the current Kalman filter-based dynamic state estimators given in the literature suffer from several important shortcomings, precluding them from being adopted by power utilities for practical applications. To be specific, they cannot handle (i) dynamic model uncertainty and parameter errors; (ii) non-Gaussian process and observation noise of the system nonlinear dynamic models; (iii) three types of outliers; and (iv) all types of cyber attacks. The three types of outliers, including observation, innovation, and structural outliers are caused by either an unreliable dynamical model or real-time synchrophasor measurements with data quality issues, which are commonly seen in the power system. To address these challenges, we have pioneered a general theoretical framework that advances both robust statistics and robust control theory for robust dynamic state and parameter estimation of a cyber-physical system. Specifically, the generalized maximum-likelihood-type (GM)-estimator, the unscented Kalman filter (UKF), and the H-infinity filter are integrated into a unified framework to yield various centralized and decentralized robust dynamic state estimators. These new estimators include the GM-iterated extended Kalman filter (GM-IEKF), the GM-UKF, the H-infinity UKF and the robust H-infinity UKF. The GM-IEKF is able to handle observation and innovation outliers but its statistical efficiency is low in the presence of non-Gaussian system process and measurement noise. The GM-UKF addresses this issue and achieves a high statistical efficiency under a broad range of non-Gaussian process and observation noise while maintaining the robustness to observation and innovation outliers. A reformulation of the GM-UKF with multiple hypothesis testing further enables it to handle structural outliers. However, the GM-UKF may yield biased state estimates in presence of large system uncertainties. To this end, the H-infinity UKF that relies on robust control theory is proposed. It is shown that H-infinity is able to bound the system uncertainties but lacks of robustness to outliers and non-Gaussian noise. Finally, the robust H-infinity filter framework is proposed that leverages the H-infinity criterion to bound system uncertainties while relying on the robustness of GM-estimator to filter out non-Gaussian noise and suppress outliers. Furthermore, these new robust estimators are applied for system bus frequency monitoring and control and synchronous generator model parameter calibration. Case studies of several different IEEE standard systems show the efficiency and robustness of the proposed estimators. / Ph. D.
78

Lokální navigace autonomního mobilního robota / Local Navigation of an Autonomous Mobile Robot

Herman, David January 2010 (has links)
This paper deals with the topic of design of a navigation system for an autonomous mobile robot in a park-like environment. Precisely, designing methods for road detection using available sensoric system, designing a mathematical model for fusion of these data, and suggesting a representation of an environment suitable for planning and local navigation.
79

Vers le vol à voile longue distance pour drones autonomes / Towards Vision-Based Autonomous Cross-Country Soaring for UAVs

Stolle, Martin Tobias 03 April 2017 (has links)
Les petit drones à voilure fixe rendent services aux secteurs de la recherche, de l'armée et de l'industrie, mais souffrent toujours de portée et de charge utile limitées. Le vol thermique permet de réduire la consommation d'énergie. Cependant,sans télédétection d'ascendances, un drone ne peut bénéficier d'une ascendance qu'en la rencontrant par hasard. Dans cette thèse, un nouveau cadre pour le vol à voile longue distance autonome est élaboré, permettant à un drone planeur de localiser visuellement des ascendances sous-cumulus et d’en récolter l'énergie de manière efficace. S'appuyant sur le filtre de Kalman non parfumé, une méthode de vision monoculaire est établie pour l'estimation des paramètres d’ascendances. Sa capacité de fournir des estimations convergentes et cohérentes est évaluée par des simulations Monte Carlo. Les incertitudes de modèle, le bruit de traitement de l'image et les trajectoires de l'observateur peuvent dégrader ces estimés. Par conséquent, un deuxième axe de cette thèse est la conception d'un planificateur de trajectoire robuste basé sur des cartes d'ascendances. Le planificateur fait le compromis entre le temps de vol et le risque d’un atterrissage forcé dans les champs tout en tenant compte des incertitudes d'estimation dans le processus de prise de décision. Il est illustré que la charge de calcul du planificateur de trajectoire proposé est réalisable sur une plate-forme informatique peu coûteuse. Les algorithmes proposés d’estimation ainsi que de planification sont évalués conjointement dans un simulateur de vol à 6 axes, mettant en évidence des améliorations significatives par rapport aux vols à voile longue distance autonomes actuels. / Small fixed-wing Unmanned Aerial Vehicles (UAVs) provide utility to research, military, and industrial sectors at comparablyreasonable cost, but still suffer from both limited operational ranges and payload capacities. Thermal soaring flight for UAVsoffers a significant potential to reduce the energy consumption. However, without remote sensing of updrafts, a glider UAVcan only benefit from an updraft when encountering it by chance. In this thesis, a new framework for autonomous cross-country soaring is elaborated, enabling a glider UAV to visually localize sub-cumulus thermal updrafts and to efficiently gain energy from them.Relying on the Unscented Kalman Filter, a monocular vision-based method is established, for remotely estimatingsub-cumulus updraft parameters. Its capability of providing convergent and consistent state estimates is assessed relyingon Monte Carlo Simulations. Model uncertainties, image processing noise, and poor observer trajectories can degrade theestimated updraft parameters. Therefore, a second focus of this thesis is the design of a robust probabilistic path plannerfor map-based autonomous cross-country soaring. The proposed path planner balances between the flight time and theoutlanding risk by taking into account the estimation uncertainties in the decision making process. The suggested updraftestimation and path planning algorithms are jointly assessed in a 6 Degrees Of Freedom simulator, highlighting significantperformance improvements with respect to state of the art approaches in autonomous cross-country soaring while it is alsoshown that the path planner is implementable on a low-cost computer platform.
80

A comparison of multiple techniques for the reconstruction of entry, descent, and landing trajectories and atmospheres

Wells, Grant 05 April 2011 (has links)
The primary importance of trajectory reconstruction is to assess the accuracy of pre-flight predictions of the entry trajectory. While numerous entry systems have flown, often these systems are not adequately instrumented or the flight team not adequately funded to perform the statistical engineering reconstruction required to quantify performance and feed-forward lessons learned into future missions. As such, entry system performance and reliability levels remain unsubstantiated and improvement in aerothermodynamic and flight dynamics modeling remains data poor. The comparison is done in an effort to quantitatively and qualitatively compare Kalman filtering methods of reconstructing trajectories and atmospheric conditions from entry systems flight data. The first Kalman filter used is the extended Kalman filter. Extended Kalman filtering has been used extensively in trajectory reconstruction both for orbiting spacecraft and for planetary probes. The second Kalman filter is the unscented Kalman filter. Additionally, a technique for using collocation to reconstruct trajectories is formulated, and collocation's usefulness for trajectory simulation is demonstrated for entry, descent, and landing trajectories using a method developed here to deterministically find the state variables of the trajectory without nonlinear programming. Such an approach could allow one to utilize the same collocation trajectory design tools for the subsequent reconstruction.

Page generated in 0.0455 seconds