• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 11
  • 10
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 90
  • 86
  • 27
  • 16
  • 15
  • 12
  • 11
  • 10
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Management of the red sea urchin fishery : a biological approach /

Ubeda, Armando J. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2004. / Typescript (photocopy). Includes bibliographical references (leaves 53-57). Also available online.
32

A viability study in terms of business opportunities for echinoderms (sea urchins) in South Africa.

Cilliers, Johannes S. 21 August 2012 (has links)
M.Comm. / Du Plessis (1993:649) states that the most common reasons for business failure are the lack of understanding of the market and inferior products. The first point in Timmons' criteria list focuses on the industry and market. This is of utmost importance as no correct analysis of a new venture's viability can be done if there is not a full understanding by the potential investor of the exact market that he/she intends to venture into. Timmons does not highlight the importance of the product as such in his criteria list although inferior products are one of the most common reasons for failure. Timmons' fatal flaw aspect, point six, is however very important as it is an "abort checkpoint". If the venture has a fatal flaw, regardless of everything else being perfect, it could cancel the potential venture. This fatal flaw aspect is in line with Cartland's "subjective determination" criteria. Various probabilities are difficult or impossible to quantify accurately. If the entrepreneur is not totally convinced of the probability of success, it should be seen as a fatal flaw and the venture abandoned. Timmons' list of eight criteria is seen to incorporate the broadest and most appropriate checklist. Chapter three will concentrate on the industry, market and product in more detail, thus ensuring a thorough understanding of the market and product, avoiding one of the weaknesses in Timmons' criteria. In chapter four the business opportunity for echinoderms in South Africa will be evaluated against the eight factors as outlined especially by Timmons in this chapter.
33

Three-dimensional skeletal patterning during sea urchin embryogenesis

Piacentino, Michael Louis 13 February 2016 (has links)
Multi-tissue pattern formation during development is a complex process in which extracellular communication events specify distinct cell types and regulate exquisite embryonic morphogenesis. The sea urchin embryo provides an excellent model for studying pattern formation due to relative genetic and morphological simplicity. The larval skeleton is secreted via biomineralization by the skeletogenic primary mesenchyme cells (PMCs). The PMCs undergo an epithelial-mesenchymal transition and migrate as individual cells within the blastocoel into stereotypic positions; this regulated PMC migration and positioning is required for normal skeletal patterning. Elegant PMC transplant experiments have demonstrated that PMC positioning, and thus skeletal patterning, is directed by ectodermal cues, and not by cues internal to the PMCs. In recent years, new efforts have been made to identify the ectodermal gene products that regulate skeletal development. The transcription factors Otp, Pax2/5/8 and Strim1, signaling by FGF, VEGF, and Wnt5a ligands have all been implicated in skeletal development in the sea urchin embryo; however, loss-of-function analysis for most of these gene products results in inhibition of skeletogenesis, suggesting that they regulate biomineralization and not PMC positioning and patterning. Notably, no skeletal patterning genes have previously been identified that pattern specific parts of the larval skeleton. This dissertation takes candidate-based and systems-level approaches to identify novel skeletal patterning genes that pattern distinct parts of the larval skeleton. We find that activation of the Alk4/5/7 receptor is required during gastrulation for anterior PMC positioning and skeletal patterning. We next test the function of the TGF-ß ligand Univin and find that it is necessary and sufficient for secondary skeletal patterning, indicating that Univin is a likely signaling ligand in anterior skeletal patterning. We also report a ventral accumulation of sulfated proteoglycans that requires function of the sulfate transporter, SLC26a2/7. This SLC-dependent sulfated proteoglycan accumulation is necessary and sufficient to attract PMCs to the ventral territory, and thereby pattern the ventral transverse skeletal elements. Finally, BMP5-8 function is required for left-side skeletal and serotonergic neuron development. Together, these studies reveal novel ectodermal genes that specifically regulate skeletal patterning across the anterior-posterior, dorsal-ventral, and left-right axes in Lytechinus variegatus embryos. / 2017-01-01T00:00:00Z
34

Molecular mechanisms underlying skeletal patterning in sea urchin embryos

Zuch, Daniel T. 25 May 2021 (has links)
Morphogenesis, or the development of tissues, structures, and organs, is at the heart of embryonic development. Morphogenesis is a complex, multi-tissue process that requires coordinated cellular communication, migration, and differentiation; due to this complexity, the mechanisms that underlie morphogenesis remain poorly understood. The sea urchin embryo is morphologically and genetically more simple than most other developmental model organisms, and is optically transparent, making it a highly tractable system in which to study morphogenetic processes. The sea urchin larval endoskeleton is a biomineral that is secreted by primary mesenchyme cells (PMCs). The PMCs ingress into the embryo and remain individual, mesenchymal cells that migrate into a stereotypic three-dimensional (3-D) pattern within the blastocoel, prefiguring the form of the ensuing skeleton, which they subsequently secrete. PMC positioning is directed by cues originating in the overlying ectoderm; however, the molecular identity of those cues has remained unknown. The work described in this dissertation combines systems-level approaches with in vivo 3-D spatial analysis to identify novel skeletal patterning genes and to define their functional roles in skeletal patterning. A transcriptomics-based screen identified numerous novel candidate skeletal patterning cues. Of those cues, two were further pursued for detailed functional studies. First, the sulfate transporter SLC26a2/7 (SLC) was found to promote ventral accumulation of sulfated proteoglycans that is both necessary and sufficient to attract PMCs to the ventral territory for ventral skeleton formation. Second, the enzyme 5-lipoxygenase (LOX) was found to be required for ventral and rotational skeletal patterning, and its product, 5(S)-HETE was found to be a chemoattractant for PMCs, thereby identifying a novel role for lipoxygenase enzymes in embryonic patterning and morphogenesis. Recent work from other groups has demonstrated that PMCs diversify their gene expression profiles during skeletal patterning, implying that PMC diversification is involved in skeletal patterning, likely as a response to locally distinct spatial cues. The studies herein identify Tbx2/3 and Pks2 as important PMC subset-specific genes whose spatial expression is modulated by SLC and LOX, respectively. Together, these results provide new mechanistic insights that define our molecular understanding of the regulation of sea urchin ventral skeletal patterning.
35

Calcification in echinoderms: regeneration of the test of the sea urchin Strongylocentrotus droebachiensis.

Vocisano, Rinaldo Antonio. January 1971 (has links)
No description available.
36

Zinc Sunscreens Affect Development of Strongylocentrotus purpuratus Embryos

Cunningham, Brittany E, Adams, Nikki L 01 June 2018 (has links) (PDF)
The growing popularity of physical sunscreens will also lead to an increased release of the ingredients from zinc oxide (ZnO) sunscreens into marine environments. Though zinc (Zn) is a necessary micronutrient in the ocean, greater than natural Zn concentrations are being released into marine environments by use of sunscreens. The extent of the consequences of the addition of Zn to the ocean are not fully understood. We investigated effects of materials released by zinc oxide (ZnO) sunscreens on the development of California purple sea urchin, Strongylocentrotus purpuratus. Embryos developed in various concentrations of Zn, the sources of which included zinc-containing compounds: ZnO and ZnSO4; and ZnO sunscreens: All Good, Badger, and Raw Elements. ZnO sunscreens were slightly more toxic than ZnO and ZnSO4, suggesting that the sunscreens may release additional unknown materials that are detrimental to sea urchin embryo development. All concentrations of Zn exposure resulted in significant malformations (skeletal abnormality, stage arrest, axis determination disruption), which were identified using light and fluorescent confocal microscopy. Developing embryos internalize Zn2+in proportion to the concentration of Zn in their environment. Additionally, both ZnO sunscreens and ZnO and ZnSO4at 1ppm Zn, significantly increased calcein-AM (CAM) accumulation, indicating decreased multidrug resistant (MDR) transporter activity. This is the first research that we know of to show that ZnO sunscreens release high concentrations of Zn that are internalized by and have detrimental effects on aquatic organisms.
37

The phylogeographic population structure of the Cape sea urchin, Parechinus angulosus

Muller, Cornelius Marthinus 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: South Africa's coastline is in the region of 3650kms and encompasses many different and dynamic marine environments. To enhance our current understanding of the population structure and gene flow patterns of intertidal zone marine species in this region, this study sets out to investigate the phylogeographic population structure of the Cape sea urchin, Parechinus angulosus, using mitochondrial and nuclear DNA sequence data collected in 2007 and 2008. Individuals were sampled from 18 geographic locations between southern Namibia and Durban, covering nearly the full extent of the species range. Sequence data were obtained from a 790bp region of the COI mtDNA gene (n=510) and a 182bp region of the nDNA SpREJ9 gene (n=145), respectively. The mtDNA data revealed 283 polymorphic sites (36%) defining 195 haplotypes, of which 160 were unique and 35 shared among individuals. Haplotype diversity (h) was found to be high both overall (h=0.95) and for individual localities (h=0.75-0.98), with nucleotide diversity (π) being low overall (π=0.013) as well as for individual localities (π=0.0033-0.0254). AMOVA revealed significant population structure among sampling sites in the Namaqua Province biogeographical region, as well as between three of the four respective coastal biogeographic provinces/regions. Gene flow was bi-directional among sampling sites in the south coast Agulhas and East Coast Province biogeographical regions, while gene flow in the Namaqua Province appears to be dominated by northwards movement. BAPS identified a significant break in the Cape Point region, which was also reflected in the gene flow patterns and parsimony networks. This broadly corresponds to previously identified biogeographic regions as well as genetic breaks for other marine species found along this coast. Fu's Fs statistics showed strong signal(s) of population expansion for individual sampling localities as well as for the data set as a whole, while MDIV estimated a time since expansion ranging from 7733-4759 years ago. The nDNA data revealed 54 variable sites (29.7%), defining 72 alleles of which 50 were unique and 22 shared among individuals. Many of the alleles (69.4%) were restricted to single sampling sites, with Betty's Bay on the south coast being the most diverse from a genetic viewpoint. Allelic diversity was high overall (h=0.86) while nucleotide diversity was low (π=0.025). No nuclear sub-group structure was identified by BAPS, although the parsimony network revealed shallow genetic structure between the Namaqua and Agulhas Provinces, with significant pairwise ФST values also recovered between their individual coastal localities. This points to at least one major barrier to gene flow for Parechinus angulosus along the South African coast, namely Cape Point. Several additional, smaller hindrances to gene flow along the coast were also identified, most of which are congruent with findings from studies on both other and sea urchin species. As a standalone study this research elucidated many aspects regarding the phylogeography of the Cape sea urchin, P. angulosus. However, it is when viewed in the broader context of invertebrate phylogeography along the southern African coastline that this research will provide its most critical insight. / AFRIKAANSE OPSOMMING: Geen opsomming
38

Extração, purificação e avaliação da atividade fagocítica do equinocromo em ouriços-do-mar Lytechinus variegatus (Lamarck, 1816). / Extraction, purification and evaluation of the phagocytic activity of echinochrome in the sea urchins Lytechinus variegatus (Lamarck, 1816).

Emerenciano, Andrews Krupinski 27 June 2014 (has links)
Em ouriços, os esferulócitos vermelhos são responsáveis pela biossíntese do equinocromo, um pigmento naftaquinônico considerado antioxidante e bactericida, no entanto seu papel na resposta imune permanece pouco elucidado. O presente trabalho avaliou a reposta imune inata de ouriços-do-mar Lytechinus variegatus, através da atividade fagocítica frente a diferentes concentrações de equinocromo (50 e 100 µg/ml). Para tanto, o equinocromo foi extraído e purificado por RP-HPLC. Nossos resultados demonstraram que o equinocromo em ambas as concentrações modula positivamente a fagocitose, aumentando a quantidade de células fagocitando. A concentração de 50 µg/ml foi capaz de ativar os amebócitos fagocíticos (AF), e aumentar a quantidade de AF com quatro ou mais leveduras fagocitadas. Já na concentração de 100 µg/ml, além da ativação dos AF, aumentou também, a quantidade de AF com uma, duas, quatro ou mais leveduras fagocitadas, sugerindo uma atuação dose-dependente. Desta forma, os dados apresentados demonstram que o equinocromo exerce um importante papel na resposta imune. / The biosynthesis of echinochrome is mediated by red sphere cell. This naphthoquinonic e pigment presents antioxidant and bactericidal characteristics. However, the echinochrome role in immune response remains unclear. In this study, we evaluated the innate immune response of the sea urchin Lytechinus variegatus. To this purpose, the echinochrome was extracted and purified by RP-HPLC. Finally, phagocytic amoebocytes were exposed to different concentrations of echinochrome (50 and 100 mg/ml), when phagocytic activity was analysed. Here, we showed that echinochrome positively modulate phagocytosis, increasing the number of phagocytizing cells. The concentration of 50 mg/ml activated phagocytic amoebocytes (AF), and increased the number of AF containing four or more phagocytosed yeasts. For the other hand, at 100 mg/ml exposure, the activation of AF also increased the number of AF with one, two, four or more yeast phagocytosed, suggesting a dose-dependent activity. Thus, the data presented demonstrated that echinochrome plays an important role in the immune response.
39

The Bioinorganic Chemistry Of Copper-Containing Systems: From Type-3 Systems Pertinent To Alzheimer’s Disease To Mononuclear Hydrolysis Involved In Biological Development

Da Silva, Giordano Faustini Zimmerer 09 May 2007 (has links)
Although transition metals are essential for life, misregulation of redox-active metal uptake, delivery, storage, and excretion has been linked with a series of neurodegenerative disorders. Alzheimer's disease (AD) is considered an epidemic and is the most widespread of all forms of dementia. Copper ions found in large concentrations localized in amyloid-ß plaques in the brain of AD patients have been linked with the generation of reactive oxygen species which are suspected to be the culprits leading to neuronal cell death. Herein a series of mechanistic and spectroscopic studies elucidate the chemistry about the metal-centered oxidation of biomolecules, including catecholamine neurotransmitters and some analogues by copper-complexes of amyloid-ß peptide. Transition metals can also be useful tools for characterization of metalloproteins due to their unique chemical and spectroscopic features. Herein a series of studies of the native Zn²+ and Cu²+-derivative of recombinant Blastula Protease 10 (BP10) from the sea urchin Paracentrotus lividus are presented in order to elucidate its catalytic mechanism, with the use of enzymology, metal substitution, and electronic absorption spectroscopy.
40

Sea urchin-kelp forest communities in marine reserves and areas of exploitation : community interactions, populations, and metapopulation analyses

Moctezuma, Gabriela Monta��o 20 December 2001 (has links)
Marine ecosystems can be exposed to natural and anthropogenic disturbances that can lead to ecological failures. Marine reserves have been lately suggested to protect marine populations and communities that have been affected by habitat destruction and harvest. This research evaluates the potential role of two marine reserves established in Oregon in 1967 (Whale Cove) and 1993 (Gregory Point). The red sea urchin (Strongylocentrotus franciscanus) was selected as indicator of population recovery since it is the only species that is commercially harvested. Changes in density, biomass, average size, size structure, growth and mortality rates were evaluated through time to assess population recovery. These parameters were also compared between reserves and adjacent exploited areas to evaluate the effect of exploitation. Results from Whale Cove (old reserve) indicate that the population in this area is fully recovered. On the contrary, the population in Gregory Point (new reserve) showed signs of recovery after six years of being protected. The importance of red urchins as source populations to provide larvae to adjacent areas was explored by the analysis of drifter's trajectories. Both reserves might be connected in a network where larvae produced in Whale Cove will provide recruits to Gregory Point and adjacent exploited areas, as well as populations in northern California. Gregory Point releases larvae that become recruits for Whale Cove only when spawning takes place in winter, otherwise larvae travel to central California. No clear trends were found in growth and mortality rates between reserves and non-reserves; differences were more related with food availability, competitors, and age specific mortality. We applied qualitative simulations to characterize and differentiate the community network inside reserves and exploited areas. Results suggest that communities from a particular site can be represented by a set of alternative models with consistent species interactions. Differences in predator-prey interactions as well as non-predatory relationships (interference competition, mutualism, amensalism) were found among sites. Each set of models represents a hypothesis of community organization that agreed with natural history information. Alternative models suggest that kelp forest communities are dynamic and can shift from one network configuration to another providing a buffer against a variable environment. / Graduation date: 2002

Page generated in 0.0628 seconds