Spelling suggestions: "subject:"ese change"" "subject:"tese change""
71 |
Evaluación estructural y ampliación de niveles para el cambio de uso de la casa del adulto mayor a centro comercial en el Distrito de La MolinaMallaupoma Arias, Brayhan Ubaldo, Montenegro Callacna, Omar Kenny January 2015 (has links)
En la evaluación estructural y ampliación de niveles para el cambio de uso de la casa del adulto mayor a centro comercial en el distrito de la molina, se determina que tan factible puede ser darle un uso comercial a una casa del adulto mayor que con las modificaciones necesarias a nivel de estructura como la ampliación de la misma en 3 niveles, nos brinda un negocio potencialmente rentable, gracias a la zona comercial donde se encuentra ubicada avenida alameda del corregidor – Cuadra 5 y el área aproximada de 700m2.
Por ello ,tenemos como objetivo general evaluar la estructura de una casa del adulto mayor para el cambio de uso a centro comercial en el distrito de La Molina y como consecuencia a la evaluación determinar si es factible ampliarlo en 3 niveles más con el fin de darle un mejor uso, acondicionándola como tiendas comerciales en todos sus niveles.
La principal teoría utilizada para evaluar la estructura y ampliarla son el análisis sísmico estático y dinámico teniendo en cuenta las cargas puntuales y distribuidas de la estructura para el estático y el espectro de Pseudo-aceleraciones para el dinámico de acuerdo a la normatividad vigente, también el modelamiento estructural en el programa ETABS con el que mediante el análisis del programa nos proporcionara los desplazamiento en la estructura y con estos resultados de acuerdo a la norma sísmica vigente podremos determinar las distorsiones en cada nivel siendo estos valores para que cumpla con la norma menores a 0.07.
El tipo de investigación utilizado es básico, cuantitativo, explicativo y el diseño es no experimental, transversal y descriptivo.
Es prospectiva pues trata de un diseño sísmico donde trabajaremos con valores proporcionados por el programa.
De los resultados que se calcularon tanto en la estructura original como en la ampliación se determinó que el cambio de uso para la estructura original teniendo en cuenta el retiro de las cargas adicionales y la ampliación es factible ya que ningún valor en las torsiones fueron mayores al 0.07 propuesto en la norma.
In the structural evaluation and extension levels for the change of use of the house of the elderly to shopping center in the district of La Molina, it is determined to be feasible as a commercial use to give a house the elderly with amendments necessary level of structure and expanding the same into 3 levels, it offers a potentially profitable business, thanks to the commercial area where it is located mayor Avenue Mall - Cuadra 5 to the approximate area of 700m2.
Therefore, we have as a general objective to evaluate the structure of a house of the elderly for change of use to a commercial center in the district of La Molina and consequently to determine the feasibility assessment extend over 3 levels more in order to give better use, renovating as commercial shops at all levels.
The main theory used to evaluate the structure and expand are static and dynamic seismic analysis considering point loads and distributed structure for static and pseudo-acceleration spectrum for dynamic according to regulations, also the structural modeling in ETABS program that by analyzing the program we provide the shift in the structure and the results according to current seismic code can determine distortions at each level being these values to comply with the norm under 0.07.
The research used is basic, quantitative and explanatory design is not experimental, transversal and descriptive.
It is a prospective for seismic design where work with values provided by the program.
From the results that were calculated in both the original structure and the extension was determined that change of use for the original structure considering the withdrawal of additional charges and the expansion it is feasible because no value was higher by twisting 0.07 proposed in the standard.
|
72 |
Impact of irrigation development and climate change on the water level of Lake Urmia, IranBeygi, Heydar January 2015 (has links)
Lake Urmia, located in the north-west of Iran, is one of the largest hypersaline lakes in the world. In recent years, there has been a significant decrease in the lake’s area and volume by 88% and 80% respectively. An integrated water balance model of the Lake Urmia Drainage Basin (LUDB) and Lake Urmia was developed to identify these main drivers of the significant changes, and to investigate the possible future evolution of the lake under effects of projected climate change and land use change. We used an energy balance method to estimate the evaporation from the lake and the Turc-Langbein method to estimate the evapotranspiration from the drainage basin of the lake. Agricultural irrigation water was introduced to the model as an extra precipitation over the irrigated fields, after being subtracted from the surplus runoff (precipitation−evapotranspiration). The agricultural land development was assumed to be linear that changed from 300000 ha at 1979 to 500000 at 2010, which is consistent with the best available data on the actual irrigation development in the basin. We estimated the annual evaporation over the Lake Urmia and the evapotranspiration over its drainage basin as 932 mm and 287 mm respectively. Our results showed that decreased precipitation and increased temperature over the basin since 1995 could explain 68% of the observed lake level decrease. Irrigation developments during the last four decades were found to be responsible for 32% of the observed lake level decrease. Thus the future lake level of the Lake Urmia is very likely to continue to decrease unless the current climate condition will be followed by a period of increased precipitation. If the current climate conditions will prevail also in the future, even a 20% decrease in the irrigated land area, which is actually quite ambitious, will not make the lake recover to its ecological level at the end of 2020.
|
73 |
Efeitos das mudanças de uso da terra no regime hidrológico de bacias de grande escalaBayer, Débora Missio January 2014 (has links)
Os efeitos das alterações de uso da terra na hidrologia das bacias hidrográficas têm sido, ao longo dos anos, amplamente discutidos para pequenas bacias experimentais. O uso de modelos hidrológicos para descrever esse tipo de processo tem se tornado promissor no que tange o estudo de grandes bacias. Sendo assim, o objetivo deste trabalho é avaliar uma metodologia para analisar o impacto das mudanças de uso da terra sobre o regime hidrológico em bacias hidrográficas de grande escala. Este estudo foi realizado por meio de simulação. Para isso foi utilizado um modelo hidrológico distribuído de base física, o Modelo de Grandes Bacias (MGB-IPH). Para realizar simulações de impactos das mudanças de uso da terra, inicialmente avaliou-se a capacidade do modelo MGB-IPH de captar as alterações produzidas pelas mudanças de uso. A análise de sensibilidade mostrou que a vazão gerada na bacia é inversamente proporcional aos parâmetros de índice de área foliar (IAF) e de altura média da vegetação (h), uma vez que quanto maior o IAF, mais interceptação ocorrerá na bacia e, quanto maior o valor de h, mais facilidade haverá nas trocas aerodinâmicas, ambos favorecendo o processo de evaporação. Já em relação aos parâmetros albedo (a) e resistência superficial (rs), a vazão gerada é diretamente proporcional, pois quanto maior o a maior a energia refletida pela superfície e, consequentemente menos energia estará disponível para o processo de evaporação. Em relação à rs, o seu aumento implica em uma menor perda por transpiração, disponibilizando mais água para gerar escoamento. As simulações de análise de sensibilidade mostraram que o MGB-IPH reproduz, de forma coerente, o comportamento médio das bacias submetidas ao desmatamento em um grande número de estudos experimentais. Assim, avaliou-se os impactos das mudanças de uso da terra no regime hidrológico em bacias de grande escala através de um estudo de caso. Este estudo de caso foi realizado na Bacia Hidrográfica do Rio Paraná. Os resultados das simulações mostraram que o desmatamento possui forte influência sobre as variáveis hidrológicas, como interceptação, evapotranspiração e vazão. Devido ao desmatamento foram verificadas reduções na interceptação e na evapotranspiração ao longo dos anos. Em relação a vazão, verificou-se que as simulações foram capaz de captar a não estacionariedade existente nas vazões observadas. Além disso, foi possível verificar que a vegetação pode ser associada a 39% dos incrementos observados na vazão média de longo termo, quando comparados os períodos anterior e posterior a 1970 na Bacia Hidrográfica do Rio Paraná. Já as variações na precipitação são responsáveis por 61% dos impactos na vazão média. Em relação às vazões extremas foram verificados incrementos, sendo eles mais expressivos nas vazões mínimas do que nas vazões máxima. Assim, pode-se afirmar que a metodologia proposta é consistente com os efeitos observados na bacia e com os resultados de estudos experimentais realizados em diferentes regiões do mundo. / The effects of land use change on the hydrology of watersheds have been widely discussed during several years in small basins. The hydrological models have been promising for describe the effects of land use change in hydrology in large basins. Thus, the aim of this study was to evaluate a methodology to study the impact of land use changes on the hydrological processes in large basins. This study was conducted by hydrological simulation. For this, a physically based distributed hydrological model, Modelo de Grandes Bacias (MGB-IPH), was used. The ability of MGB-IPH model for study the effects of land-use change in hydrology processes was first analyzed. The results of sensibility analysis showed that the flow generated in the basin is inversely proportional to the parameters of leaf area index (LAI) and average vegetation height (h), since the higher the LAI more interception, and the higher the h easier will be the aerodynamic changes, both favoring the evaporation process . The flow is directly proportional to the parameters albedo (a) and surface resistance (rs), since the greater the a, more energy reflected by the surface, and consequently less energy is available for the evaporation process. The increasing in rs parameter implies a smaller loss by transpiration, and then more runoff is generated. The sensibility analysis showed that the MGB-IPH reproduces consistently, the average behavior of the basins subjected to deforestation on a large number of experimental studies. Thus, we evaluated the impacts of land use changes on the hydrological regime in large-scale basins by a case study. This case study was conducted in the Paraná River Basin. The simulation results showed that deforestation has a strong influence by hydrological variables, such as interception, evapotranspiration and flow. Due to deforestation were observed interception and evapotranspiration reduction over the years. It was found that the simulations were able to capture the non-stationarity in the observed streamflows. Furthermore, we found that 39% of the observed increase in average flow of long term is due to vegetation change, when comparing the periods before and after 1970 in the Paraná River Basin, while the 61% is due precipitation changes. Increments were observed in extreme flows. These increments were more evident at low flows than the maximum flow. Thus, it can be stated that the proposed methodology is consistent with the effects observed in the Rio Paraná basin and with the results of experimental studies conducted in different regions of the world.
|
74 |
Long-term Trend of Evapotranspiration in Sweden Affected by Climate Change or Land-use Change.Zhang, Wenxin January 2011 (has links)
Evapotranspiration (ET) is an essential component of water cycle as it is an interlinkage between atmosphere, vegetation and soil surface in terms of energy and water balance. However, whether potential ET has the same tendency to change as actual ET and how ET trend (based on the difference between precipitation and runoff) is directly driven by dominant meteorological factors alone or combined with ecosystem‘s feedbacks to climate change (like land-use change) is still under the discussion. In this report, five ET parameterizations within two rainfall-runoff models [Coupled Heat and Mass Transfer Model (CoupModel) and Hydrologiska Byråns Vattenbalansavdelning (HBV)] have been set up based on six subcatchments of Sweden. The scenario derived from CoupModel shows that the trend of ET is affected by the change of land-use, where soil evaporation tends to shift to transpiration and interception evaporation. However, HBV model produces the other scenario: the trend of ET is merely the consequence of meteorological factors. Increased ET is contributed by increased interception evaporation due to the increased precipitation. After identifying the time split of changing ET trends, a dynamic simulation constructed both from HBV and CoupModel indicate that the increased total ET is primarily from increased ET in winter time. More and more interceptive water loss and transpiration resulted from land-use change due to more vegetation. On the other hand, land-use change is also a feed back to climate change. Transpiration controlled by the mechanism of stomata and water uptake controlled by reduction of soil moisture is highly related to variations of climatic conditions.
|
75 |
Comprendre les changements d'utilisation des terres en France pour mieux estimer leurs impacts sur les émissions de gaz à effet de serre : De l'observation à la modélisation / Understanding land-use changes in france to better estimate their impacts on greenhouse gas emissions : from observation to modellingRobert, Colas 15 December 2016 (has links)
Au titre de ses engagements, la France doit comptabiliser annuellement les changements d'occupation du sol et les flux de carbone associés. Cet inventaire, réalisé par le Citepa, est délicat à évaluer, car les données sources sont complexes et contradictoires. En outre, ce secteur présente des enjeux stratégiques dans la lutte contre le changement climatique. Les limites de cet inventaire sont de plusieurs ordres : données sources imparfaites ; manque de connaissance sur les autres données existantes pouvant être utilisées; incertitude mal évaluée ; nécessité de validation de la pertinence des dynamiques estimées.L'objectif de cette thèse est d'analyser et d'évaluer les données sources (actuelles et potentielles) des matrices de changements d'occupation du sol afin d'améliorer la robustesse de l'inventaire. Il s'agit d'expertiser par une démarche scientifique la pertinence de l'inventaire. En particulier, il s'agit de comprendre les causes des incertitudes des données sources ; compiler les données disponibles et leurs métadonnées ; étudier qualitativement les dynamiques paysagères; et redéfinir un cadre méthodologique permettant d'estimer des taux de changements plus pertinents. Les résultats de ces travaux montrent que les niveaux de résolutions spatiales, thématiques et temporelles les plus précis entraînent la détection de faux positifs : la pertinence est à préférer à la précision, et les effets de dépendance d'échelle doivent être pris en compte. La thèse propose enfin un cadre d'interopérabilité afin d'intégrer des données hétérogènes au sein d'un nouveau protocole de modélisation alliant rééstimation des changements et allocation spatiale. / France is required to account for annual land-cover changes and induced carbon fluxes). This inventory is difficult to calcula te, for data source are complex and contradictory. Moreover, this sector is important as its role in combating climate change is emphasized. This thesis proposes improvements to several identified methodological issues: imperfect data sources, Jack of knowledge about other potential sources„ poorly evaluated uncertainties, validation of landscape dynamics consistency..Thus, the objective of this thesis is to analyse and assess current and potential data sources for computing land-cover change area matrixes, in order to enhance the robustness of the inventory. A scientific approach is conducted to assess the inventory, to understand what causes uncertainties in land cover products, to compile datasets and their metadata, to study the landscape dynamics, and to define a new methodological framework allowing better and more consistent estimates of land cover change rates at national scale.This work suggests that the finest spatial, thematical and temporal resolution levels lead to overestimation of false positives. Accuracy and consistency are preferable to precision and scale dependency must be considered. Finally, we propose an interoperability framework for data integration, via a modeling protocol linking land cover change estimation and spatial allocation.
|
76 |
PATTERNS AND DRIVERS OF ANT BIODIVERSITY ALONG URBANIZATION GRADIENTSPerez, Jaime Abraham 07 September 2020 (has links)
No description available.
|
77 |
Spatial And Temporal Dynamics Of Land Use Impacts On Water Quality In Watershed SystemsTsvetkova, Olga 01 January 2007 (has links) (PDF)
ABSTRACT SPATIAL AND TEMPORAL DYNAMICS OF LAND USE IMPACTS ON WATER QUALITY IN WATERSHED SYSTEMS SEPTEMBER 2007 OLGA TSVETKOVA, B.S., NOVGOROD STATE UNIVERSITY, RUSSIA M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Timothy O. Randhir Predicting land use change and assessing watershed tradeoffs between the watershed system components through system simulation helps to determine future nutrient and sediment load reductions needed to obtain a particular water quality standard. This also helps to examine the tradeoffs among nutrient and sediment load reductions that achieve the same water quality objective. Tradeoff assessment is a useful tool to meet agricultural and urban needs in regard protecting water quality. The purpose of this study has been to develop and apply a spatial temporal dynamic simulation model for the land use change and a hydrologic dynamic simulation model for the estimation of the tradeoffs relationships between watershed contaminants and attributes. The Spatial – temporal dynamic model is applied to one of the subbasins within the Blackstone River Watershed to predict potential land use changes in the subbasin. Results show that the increase in urban land use in the watershed is associated with the decline in agricultural and forest land. The overall preliminary results show that urbanization could become a serious problem in the future. The results emphasize the need to protect agricultural area in rapidly changing watersheds. In the watershed tradeoffs simulation modeling, the effect of land use change on water quality is simulated using the Soil and Water Assessment Tool. The methodology is applied to the Blackstone River watershed and its 115 subbasins. Regression statistics as well as graphical techniques are used for accurate evaluation of the model. Water quality and quantity estimated using an array of equations to simulate watershed processes. It is observed that a fairly high variability exists for soluble phosphorus, mineral phosphorus, and sediment yield. The tradeoff relationships between watershed components are described by tradeoff equations and graphically. The regression results indicate that the highest correlations exist between nitrate and surface runoff and between mineral phosphorus and sediment yield. The final tradeoff matrix is developed for the study watershed and could be used to assess various policies that include policies on nutrients, water resources, and land use.
|
78 |
Understanding how Odonates Respond to Global Change; a Cross-Continental AnalysisSirois-Delisle, Catherine 09 August 2023 (has links)
Global change profoundly alters biological communities and increases species extinction rates. Recent reports show that odonate species (dragonflies and damselflies) are declining globally, however, odonates can also respond strongly to climate and land use change through shifts in range and phenology - i.e., the timing of life history events. Understanding how and when species respond to rapid environmental change is critical to address conservation risks in a timely way. I assembled a dataset of ~2 million odonate records between 1901 and 2021 and investigated a series of research questions about odonate persistence within historically occupied regions, how species respond across continents, and mechanisms leading to these responses. I discovered that non-target effects of pesticides interacted with temperature increases, leading to higher rates of odonate declines across the United States. Species with greater capacities in shifting their range northward may be more robust to impacts of global change (Chapter 2). Converging across Europe and North America, stronger range limit shifts were associated with stronger shifts in emergence phenology towards earlier spring dates, even though land use histories are highly divergent among regions. It is temperature variability and range geography, determinants of habitat conditions to which species are exposed, rather than ecological traits, that facilitated or hindered range shifts (Chapter 3). Temperature variability interacted with pesticide applications to hinder persistence or establishment in new areas that were otherwise climatically suitable, providing further evidence of impacts of extreme weather to insect declines. Tests of methods commonly used to predict species' distributions under future climate change (Species Distribution Models) revealed that species most likely to decline were also less likely to be well modeled, in terms of their temporal transferability (Chapter 4). This work deepens knowledge of spatial and temporal interspecific variation in species distributions as humans continue to reshape the Earth's ecosystems and climatic processes. This thesis can help improve species-specific conservation planning for species that decline in the face of anthropogenic activities.
|
79 |
An Examination of Distributed Hydrologic Modeling Methods as Compared with Traditional Lumped Parameter ApproachesPaudel, Murari 06 July 2010 (has links) (PDF)
Empirically based lumped hydrologic models have an extensive track record of use where as physically based, multi-dimensional distributed models are evolving for various engineering applications. Despite the availability of high resolution data, better computational resources and robust numerical methods, the usage of distributed models is still limited. The purpose of this research is to establish the credibility and usability of distributed hydrologic modeling tools of the United States Army Corps of Engineers (USACE) in order to promote the extended use of distributed models. Two of the USACE models were used as the modeling tools for the study, with Gridded Surface and Subsurface Hydrologic Analysis (GSSHA) representing a distributed and with Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) representing a lumped model. Watershed Modeling System (WMS) was used as the pre- and post-processing tool. The credibility of distributed models has been established by validating that the distributed models are efficient in solving complex hydrologic problems. The distributed and lumped models in HEC-HMS were compared. Similarly, the capabilities of GSSHA and lumped models in HEC-HMS in simulating land use change scenario were compared. The results of these studies were published in peer-reviewed journals. Similarly, the usability of the distributed models was studied taking GSSHA-WMS modeling as a test case. Some of the major issues in GSSHA-modeling using WMS interface were investigated and solutions were proposed to solve such issues. Personal experience with GSSHA and feedback from the students in a graduate class (CE531) and from participants in the USACE GSSHA training course were used to identify such roadblocks. The project being partly funded by the USACE Engineering Research and Development Center (ERDC) and partly by Aquaveo LLC, the research was motivated in improving GSSHA modeling using the WMS interface.
|
80 |
Potential impacts of climate change and land-use change on hydrological drought in the Western Cape (South Africa)Naik, Myra 31 March 2023 (has links) (PDF)
The Western Cape (South Africa) recently witnessed the most severe drought on record. The meteorological drought, which was characterised by below-normal rainfall for three consecutive years (2015 – 2017), cascaded to agricultural and then hydrological drought, resulting in devastating socio-economic consequences. While some studies indicate that climate change may increase the severity and frequency of droughts in the Western Cape in the future, there is a lack of information on how to mitigate the effects of future climate change on hydrological drought. This dissertation therefore investigated the extent to which land-use changes could be applied to reduce climate change impacts on future hydrological drought in this region. For the study, the revised Soil Water Assessment Tool (SWAT+) was calibrated and evaluated over four river basins in the Western Cape, and the climate simulation dataset from the COordinated Regional Downscaling EXperiment (CORDEX) was bias-corrected. Using the bias-corrected climate data as a forcing, the SWAT+ was used to project the impacts of future climate change on water yield and hydrological drought in the four basins and to quantify the sensitivity of the projection to four feasible land-use change scenarios in these basins. The relevant land-use scenarios are the expansion of mixed forests (FrLand), the restoration of grassland (GrLand), the restoration of shrubland (SrLand), and the expansion of cropland (CrLand). The model evaluation shows good agreement between the simulated and observed monthly streamflow at hydrological stations, and the bias correction of the CORDEX datasets improved the quality of the SWAT+ hydrological simulations in the four basins. The climate change projection depicts an increase in temperature and potential evapotranspiration but a decrease in precipitation and all the hydrological variables. Drying is projected across the Western Cape, and the magnitude of such drying increases with higher global warming levels (GWLs). The land-use changes alter the impacts of climate change by influencing the hydrological balance. While FrLand mitigates the impacts of climate change on the frequency of hydrological drought by increasing streamflow, soil water and percolation, CrLand mitigates the impacts by increasing surface runoff. However, the magnitudes of these land-use change impacts are very small compared to the climate change impacts. Hence, the results suggest that land-use changes may not be an efficient strategy for mitigating the climate change impacts on hydrological drought over the region. The findings obtained from this 2 research provide relevant information towards mitigating the severity of future droughts and improving water security in Western Cape River Basins.
|
Page generated in 0.0439 seconds