1 |
The Role of Epigenetics in Regulating V(D)J Recombination and Allelic ExclusionKondilis-Mangum, Hrisavgi Demetrios January 2011 (has links)
<p>As members of the adaptive immune response, T- and B- cells express unique antigen receptors generated from antigen receptor loci. These loci encode multiple Variable (V), Diversity (D), and Joining (J) gene segments. Through a process known as V(D)J recombination, genomic rearrangements occur to generate a unique antigen receptor proteins. During each stage of lymphocyte development, antigen receptor loci are epigenetically regulated. The epigenetic regulation promotes and inhibits V(D)J recombination through different mechanisms. To generate an antigen receptor protein, the substrates for rearrangement (recombination signal sequences, RSSs) must be made accessible to the recombination machinery. Moreover, once an antigen receptor locus has rearranged and produced a successful in-frame protein, a mechanism known as allelic exclusion prevents further recombination.</p><p>The nucleosome can positively and negatively regulate V(D)J recombination. Therefore, we defined the in vivo nucleosome organization of accessible and inaccessible RSSs on the Tcr loci. We used Tcrb and Tcra alleles which lack various cis-elements (e.g. enhancers and promoters) and terminate transcription. By comparing nucleosome organization and histone octamer occupancy, we found that accessible alleles are characterized by lower histone octamer occupancy and in some cases movement of nucleosomes. Also, we found that some these changes are mediated by transcription through the RSS. We concluded that one mechanism by which cis-elements epigenetically regulate RSS accessibility is by histone octamer loss and nucleosome repositioning and that some of these changes are mediated by transcription.</p><p>In addition, we further investigated how allelic exclusion prevents Tcrb locus recombination in CD4, CD8 double positive (DP) thymocytes. A previous study had introduced the Tcra enhancer (Eα) into the middle of the Tcrb locus to test if allelic exclusion was mediated solely by RSS accessibility. That study found that Eα could force RSS accessibility in DP thymocytes, but Vβ RSS accessibility did not overcome additional mechanisms involved in allelic exclusion. One potential mechanism that has been suggested in the literature is changes in locus conformation. Thus, we tested if RSS accessibility and locus conformation together mediate allelic exclusion. We generated two alleles that overcome changes in RSS accessibility, due to the presence of Eα and that overcome changes in locus conformation, due to a decrease in distance between Vβ and DJβ RSSs. We found that both alleles are accessible in DP thymocytes and we detected Vβ to DJβ recombination in DP thymocytes. Therefore, the epigenetic mechanisms that regulate Tcrb allelic exclusion consists of changes in RSS accessibility and changes in locus conformation.</p> / Dissertation
|
2 |
Mechanistic and Genetic Biases in Human Immunoglobulin Heavy Chain DevelopmentVolpe, Joseph M 23 April 2008 (has links)
Broadly neutralizing antibodies against HIV are rare; most patients never develop them at detectable levels. The discovery of four such antibodies therefore warrants research into their origins and their presumed unique characteristics. Such studies, however, require baseline knowledge about commonalities and biases affecting human immunoglobulin development. Obtaining that knowledge requires large sets of gene sequence data and the appropriate statistical techniques and tools.
The Genbank repository provides a free and easily accessible source for such data. Several large datasets cumulatively comprising over 10,000 human Ig heavy chain genes were identified, downloaded, and carefully filtered. We then developed a special software tool called SoDA, which employs a unique dynamic programming algorithm to provide a statistical reconstruction of the events that led to a given antigen receptor gene. Once developed, tested, and peer-reviewed, we used SoDA to provide initial data about each downloaded gene with respect to gene segment usage, n-nucleotide addition, CDR3 length, and mutation frequency, thereby establishing the most precise estimates currently available for human Ig heavy chain gene segment usage frequencies.
We compared data from productive non-autoreactive Ig to non-productive Ig and found evidence for gene segment usage biases, D/J segment pairing preferences resulting from multiple sequential D-to-J recombination events, and biases in TdT action between the V-D and D-J. Further analysis of autoreactive Ig genes yielded evidence that n-nucleotide addition comes at a cost: the higher the ratio of n-nucleotides to germline-encoded nucleotides for a given CDR3 length, the greater the probability of autoreactivity. These results suggest that the germline gene segments have been selected for lack of autoreactivity.
It has previously been shown that human Ig gene segments have evolved efficient evolvability under somatic hypermutation. We have now extended these results, showing that Ig gene sequences are "tuned" to preferentially produce consequential mutations in the antigen-binding domains, and synonymous mutations in the framework regions.
Together, these analyses provide new insights into the genetic and mechanistic biases shaping the human Ig repertoire. / Dissertation
|
3 |
The Role of Tcrb Subnuclear Positioning in V(D)J RecombinationChan, Elizabeth Ann Wilcox January 2014 (has links)
<p>T cells and B cells each express unique antigen receptors used to identify, eliminate, and remember pathogens. These receptors are generated through a process known as V(D)J recombination, in which T cell receptor and B cell receptor gene loci undergo genomic recombination. Interestingly, recombination at certain genes is regulated so that a single in-frame rearrangement is present on only one allele per cell. This phenomenon, termed allelic exclusion, requires two steps. First, recombination can occur only on one allele at a time. In the second step, additional recombination must be prevented. Though the mechanism of the second step is well-understood, the first step remains poorly understood.</p><p>The first step of recombination necessitates that alleles rearrange one at a time. This could be achieved either through inefficient recombination or by halting further recombination in the presence of recombination. To separate these mechanisms, we analyzed recombination in nuclei unable to complete recombination. We found that rearrangement events accumulated at antigen receptor loci, suggesting that the presence of recombination does not stop additional rearrangements and asynchronous recombination likely results from inefficient recombination at both alleles.</p><p>Association with repressive subnuclear compartments has been proposed to reduce the recombination efficiency of allelically excluded antigen receptor loci. Of the alleleically excluded loci, <italic>Tcrb</italic> alleles are uniquely regulated during development. Other allelically excluded alleles are positioned at the transcriptionally-repressive nuclear periphery prior to recombination, and relocate to the nuclear interior at the stage in which they recombine. However <italic>Tcrb</italic> alleles remain highly associated with the nuclear periphery during rearrangement. Here we provide evidence that this peripheral subnuclear positioning of <italic>Tcrb</italic> alleles does suppress recombination. We go on to suggest that peripheral localization mediates the first step of allelic exclusion.</p><p>In search of the mechanism by which recombination is suppressed on peripheral <italic>Tcrb</italic> alleles, we investigated the subnuclear localization of a recombinase protein. Two recombinase proteins are required for recombination, one of which is recruited to actively transcribing (and more centrally located) DNA. Here we demonstrate that one recombinase protein is unable to localize to peripheral <italic>Tcrb</italic> alleles, potentially serving as the mechanism by which recombination is suppressed on peripheral alleles.</p> / Dissertation
|
4 |
STAT5 Orchestrates Local Epigenetic Changes for Chromatin Accessibility and Rearrangements by Direct Binding to the TCRγ Locus / STAT5はT細胞受容体γ遺伝子座に直接結合することでクロマチンのアクセシビリティと再編成のための局所的なエピジェネティクス変化を制御するWagatsuma, Keisuke 25 January 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第19405号 / 医科博第65号 / 新制||医科||5(附属図書館) / 32430 / 京都大学大学院医学研究科医科学専攻 / (主査)教授 河本 宏, 教授 斎藤 通紀, 教授 竹内 理 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DGAM
|
5 |
Probabilistic approaches to the adaptive immune repertoire : a data-driven approach / Approches probabilistes du répertoire immunitaire adaptatif : une approche guidée par les donnéesMarcou, Quentin 28 September 2017 (has links)
Le système immunitaire de chaque individu doit faire face à des agressions répétées d'un environnement en constante évolution, constituant ainsi un nombre de menaces virtuellement infini. Afin de mener ce rôle à bien, le système immunitaire adaptatif s'appuie sur une énorme diversité de lymphocytes T et B. Chacune de ces cellules exhibe à sa surface un récepteur unique, créé aléatoirement via le processus de recombinaison V(D)J, et spécifique à un petit nombre de pathogènes seulement. La diversité initiale générée lors de ce processus de recombinaison est ensuite réduite par une étape de sélection fonctionnelle basée sur les propriétés de repliement du récepteur ainsi que ses capacités à interagir avec des protéines du soi. Pour les cellules B, cette diversité peut être à nouveau étendue après rencontre d'un pathogène lors du processus de maturation d'affinité durant lequel le récepteur subit des cycles successifs d'hypermutation et sélection. Ces travaux présentent des approches probabilistes visant à inférer les distributions de probabilités sous-tendant les processus de recombinaison et d'hypermutation à partir de données de séquençage haut débit. Ces approches ont donné naissance à IGoR, un logiciel polyvalent dont les performances dépassent celles des outils existants. En utilisant les modèles obtenus comme base, je présenterai comment ces derniers peuvent être utilisés afin d'étudier le vieillissement et évolution du répertoire immunitaire, la présence d'emprunte parentale lors de la recombinaison V(D)J ou encore pour démontrer que les jumeaux échangent des lymphocytes au cours de la vie fœtale. / An individual’s adaptive immune system needs to face repeated challenges of a constantly evolving environment with a virtually infinite number of threats. To achieve this task, the adaptive immune system relies on large diversity of B-cells and T-cells, each carrying a unique receptor specific to a small number of pathogens. These receptors are initially randomly built through the process of V(D)J recombination. This initial generated diversity is then narrowed down by a step of functional selection based on the receptors' folding properties and their ability to recognize self antigens. Upon recognition of a pathogen the B-cell will divide and its offsprings will undergo several rounds of successive somatic hypermutations and selection in an evolutionary process called affinity maturation. This work presents principled probabilistic approaches to infer the probability distribution underlying the recombination and somatic hypermutation processes from high throughput sequencing data using IGoR - a flexible software developed throughout the course of this PhD. IGoR has been developed as a versatile research tool and can encode a variety of models of different biological complexity to allow researchers in the field to characterize evermore precisely immune receptor repertoires. To motivate this data-driven approach we demonstrate that IGoR outperforms existing tools in accuracy and estimate the sample sizes needed for reliable repertoire characterization. Finally, using obtained model predictions, we show potential applications of these methods by demonstrating that homozygous twins share T-cells through cord blood, that the public core of the T cell repertoire is formed in the pre-natal period and finally estimate naive T cell clone lifetimes in human.
|
6 |
Normal and pathological mechanisms of TCRα/δ locus rearrangement in thymic lymphopoiesis / Mécanismes de régulation normale et pathologique des remaniements du locus TCRα/δ dans la lymphopoïèse thymiqueCieslak, Agata 28 November 2016 (has links)
La maturation des cellules lymphoïdes T est un processus thymique hautement régulé au cours duquel les réarrangements ordonnés des loci du TCRδ, y, β et enfin α déterminent le développement des lignées yδ et αβ. Les remaniements somatiques des segments géniques V, (D) et J du TCR font intervenir les protéines RAG1/2, les séquences RSS jouxtant ces segments et des éléments régulateurs (enhancers) assurant une cis-régulation de ce processus. Le contrôle de la recombinaison V(D)J se fait grâce à divers mécanismes incluant des mécanismes épigénétiques, l’intervention de facteurs de transcription et la conformation/séquence des RSS. Dans ce travail, nous montrons que les réarrangements du locus TCRδ sont strictement ordonnés chez l’Homme. Le premier réarrangement Dδ2-Dδ3 se produit à un stade ETP (Early T-cell Precursor) CD34+/CD1a-/CD7+dim, et précède systématiquement le réarrangement Dδ2-Jδ1. L’analyse in silico du locus a permis d’identifier un site de fixation clé pour le facteur de transcription RUNX1 à proximité immédiate de l’heptamètre Dδ2-23RSS chez l’Homme mais absent chez la souris. Le recrutement de RUNX1 sur ce site dans les thymocytes très immatures CD34+/CD3- permet d’augmenter l’affinité de fixation des protéines RAG1/2 sur le Dδ2-23RSS de manière spécifique. Ce travail identifie un rôle original de cofacteur de RUNX1 au cours de la recombinaison V(D)J dans la thymopoïèse humaine. Une série d’analyses épigénétiques exhaustives, menées dans le cadre du projet Européen Blueprint, sur les sous-populations thymiques humaines, nous a permis d’établir que l’enhanceosome du TCRα est constitué, comme chez la souris, dès les étapes les plus précoces de la thymopoïèse sans pour autant pouvoir s’activer avant la fin de la β-sélection. Nos résultats préliminaires suggèrent que les protéines homéotiques HOXA (notamment HOXA9) répriment l’activité de l’enhancer alpha (et donc les réarrangements du TCRα en interagissant avec le facteur de transcription ETS1 via leurs homéodomaines. Leur répression, induite par le passage de la β-sélection, aboutit à l’ouverture chromatinienne des segments Vα/Jα via l’activation du TCRα. Ces résultats apportent un éclairage nouveau sur le découplage jusqu’ici inexpliqué entre la formation de l’enhanceosome du TCRα à un stade très immature et son activation, permettant les réarrangements du locus, à un stade thymique bien plus tardif. / Maturation of T lymphoid cells is a highly regulated process where ordered thymic rearrangements at the TCRδ, TCRy, TCRβ and finally TCRα loci determine the development into either yδ or αβ T-cell lineages. Somatic rearrangements of V, (D), and J gene segments of TCR loci involve RAG1/2 proteins, RSS sequences juxtaposing V, D, and J genes segments and regulatory elements (enhancers) providing a cis-regulation of this process. The control of the V(D)J recombination is achieved through various mechanisms including epigenetic modifications, involvement of transcription factors and RSS conformation/sequence. In this work, we show that TCRδ rearrangements are strictly ordered in Humans. The first Dδ2-Dδ3 rearrangement occurs at ETP (Early T-Cell Precursor) stage CD34+/CD1a-/CD7+dim, and always precedes Dδ2-Jδ1 rearrangement. In-silico analysis of the locus identified a key binding site for a transcription factor RUNX1 in close proximity to the Dδ2-23RSS heptamer in human, but not in mice. The RUNX1 recruitment at this site in immature CD34+/CD3- thymocytes increases binding affinity of RAG1/2 proteins. This work identifies an original cofactor of human VDJ recombination. A set of comprehensive epigenetic analysis conducted within the Europeen Blueprint project on human thymic subpopulations allowed as to establish that the TCRα enhanceosome (Eα), as in mice, is already formed from the earliest stages of thymopoiesis without being able to be activated before the end of β-selection. Our preliminary results suggest that HOXA homeobox proteins (including HOXA9) suppress the activity of the Eα (thus TCRα rearrangements) by interacting with the transcription factor ETS1 via their homeodomains. Induced by β-selection HOXA repression results in the chromatin opening of the Vα/Jα gene segments through TCRα activation. These finding shed new light on the so far unexplained shift observed between the formation of Eα enhanceosome at a very immature stages and its activation at a much later developmental stages.
|
7 |
Regulation of B cell development by antigen receptorsHauser, Jannek January 2011 (has links)
The developmental processes of lymphopoiesis generate mature B lymphocytes from hematopoietic stem cells through increasingly restricted intermediates. Networks of transcription factors regulate these cell fate choices and are composed of both ubiquitously expressed and B lineage-specific factors. E-protein transcription factors are encoded by the three genes E2A, E2-2 (SEF2-1), and HEB. The E2A gene is required for B cell development and encodes the alternatively spliced proteins E12 and E47. During B lymphocyte development, the cells have to pass several checkpoints verifying the functionality of their antigen receptors. Early in the development, the expression of a pre-B cell receptor (pre-BCR) with membrane-bound immunoglobulin (Ig) heavy chain protein associated with surrogate light chain (SLC) proteins is a critical checkpoint that monitors for functional Ig heavy chain rearrangement. Signaling from the pre-BCR induces survival and a limited clonal expansion. Here it is shown that pre-BCR signaling rapidly down-regulates the SLCs l5 and VpreB and also the co-receptor CD19. Ca2+ signaling and E2A were shown to be essential for this regulation. E2A mutated in its binding site for the Ca2+ sensor protein calmodulin (CaM), and thus with CaM-resistant DNA binding, makes l5, VpreB and CD19 expression resistant to the inhibition following pre-BCR stimulation. Thus, Ca2+ down-regulates SLC and CD19 gene expression upon pre-BCR stimulation through inhibition of E2A by Ca2+/CaM. A general negative feedback regulation of the pre-BCR proteins as well as many co-receptors and proteins in signal pathways from the receptor was also shown. After the ordered recombination of Ig heavy chain gene segments, also Ig light chain gene segments are recombined together to create antibody diversity. The recombinations are orchestrated by the recombination activating gene (RAG) enzymes, other enzymes that cleave/mutate/assemble DNA of the Ig loci, and the transcription factor Pax5. A key feature of the immune system is the concept that one lymphocyte has only one antigen specificity that can be selected for or against. This requires that only one of the alleles of genes for Ig chains is made functional. The mechanism of this allelic exclusion has however been an enigma. Here pre-BCR signaling was shown to down-regulate several components of the recombination machinery including RAG1 and RAG2 through CaM inhibition of E2A. Furthermore, E2A, Pax5 and the RAGs were shown to be in a complex bound to key sequences on the IgH gene before pre-BCR stimulation and instead bound to CaM after this stimulation. Thus, the recombination complex is directly released through CaM inhibition of E2A. Upon encountering antigens, B cells must adapt to produce a highly specific and potent antibody response. Somatic hypermutation (SH), which introduces point mutations in the variable regions of Ig genes, can increase the affinity for antigen, and antibody effector functions can be altered by class switch recombination (CSR), which changes the expressed constant region exons. Activation-induced cytidine deaminase (AID) is the mutagenic antibody diversification enzyme that is essential for both SH and CSR. The AID enzyme has to be tightly controlled as it is a powerful mutagen. BCR signaling, which signals that good antibody affinity has been reached, was shown to inhibit AID gene expression through CaM inhibition of E2A. SH increases the antigen binding strength by many orders of magnitude. Each round of SH leads to one or a few mutations, followed by selection for increased affinity. Thus, BCR signaling has to enable selection for successive improvements in antibodies (Ab) over an extremely broad range of affinities. Here the BCR is shown to be subject to general negative feedback regulation of the receptor proteins as well as many co-receptors and proteins in signal pathways from the receptor. Thus, the BCR can down-regulate itself to enable sensitive detection of successive improvements in antigen affinity. Furthermore, the feedback inhibition of the BCR signalosome and most of its protein, and most other gene regulations by BCR stimulation, is through inhibition of E2A by Ca2+/CaM. Differentiation to Ab-secreting plasmablasts and plasma cells is antigen-driven. The interaction of antigen with the membrane-bound Ab of the BCR is critical in determining which clones enter the plasma cell response. Genome-wide analysis showed that differentiation of B cells to Ab-secreting cell is induced by BCR stimulation through very fast regulatory events, and induction of IRF-4 and down-regulation of Pax5, Bcl-6, MITF, Ets-1, Fli-1 and Spi-B gene expressions were identified as immediate early events. Ca2+ signaling through CaM inhibition of E2A was essential for these rapid down-regulations of immediate early genes after BCR stimulation in initiation of plasma cell differentiation.
|
8 |
Přestavby genů pro imunoglobuliny a sledování minimální reziduální nemoci u B-lymfoproliferativních onemocnění. / Immunoglobulin genes rearrangement and minimal residual disease monitoring in B-lymphoproliferative disease.Lokvenc, Milan January 2012 (has links)
Malignant lymphomas are tumors arising by clonal proliferation of lymphocytes stopped at a specific stage of differentiation. All tumor cells arising from the original clone thus share the same characteristics and that can be used in their detection. Finding a suitable molecular marker of tumor cells is an essential step not only to disease diagnosis, but also for monitoring of minimal residual disease. Minimal residual disease is defined as the subclinical disease level, which malignant cells are not detectable for conventional cytological methods during the therapy. These residual cells can cause relapse. The main goals of the diploma thesis are a detection and analysis of immunoglobulin genes rearrangement and chromosomal translocation t(11; 14) in the MTC region, and a development and optimization of RQ-PCR system for detection of minimal residual disease. Quantification of clonal rearrangement or chromosomal translocation allows the detection of minimal residual disease level in patients with malignant lymphomas. Clonal immunoglobulin genes rearrangement or characteristic chromosomal translocation were analyzed in 19 patients with malignant lymphomas. There were analyzed individual gene segments, N-region and combination variability in immunoglobulin genes rearrangement. There was developed...
|
9 |
Role for Fanconi anemia pathway in immunoglobulin diversification / Rôle de la voie FANC dans les processus de diversifications des immunoglobulineNguyen, Thuy Vy 21 November 2013 (has links)
Dans le but de reconnaitre et répondre de manière efficace à une très grande variétés d’agents pathogènes, les cellules B ont développé au cours des mécanismes de diversifications des immunoglobulines contrôlés par des processus génétiques complexes comme la recombinaison V(D)J, l’hypermutation somatiques (SHM), et le changement de classe par recombinaison (CSR). L’ensemble de ces processus est contrôlé par différentes voies de réparations de l’ADN. L’anémie de Fanconi est une maladie génétique rare caractérisée par une défaillance progressive de la moelle osseuse, des anomalies de développement et un risque accru de développer des leucémies et des cancers oesopharyngés. La voie FANC est impliquée dans la réparation des pontages de l’ADN et dans le maintien de la fourche de réplication en cas de stress génotoxique. Il est également bien décrit que la voie FANC joue un rôle important dans la coordination des voies de réponses aux dommages à l’ADN. Dans ce travail de thèse, nous nous sommes intéressés au rôle de la voie FANC dans les processus de diversifications des immunoglobulines.En utilisant des souris déficientes pour le gène Fanca, nous montrons que la voie FANC (ou FANCA) participe à la recombinaison V(D)J en contrôlant, dans la moelle osseuse, la transition des cellules B, du stade pre-B au stade de cellules B immatures. Ceci se ferait probablement par le contrôle de la transcription des gènes codant les chaines légères κ des immunoglobulines. Nous montrons également que Fanca pourrait avoir un rôle dans l’addition de nucleotides aux extrémités codantes, en régulant d’une manière indéterminée l’activité et/ou l’activation de l’enzyme TdT ou de la polymérase Polµ. Par ailleurs, nous avons montré que Fanca est nécessaire pour l’induction des mutations de type transitions A/T pendant le processus de SHM en régulant l’expression ou la stabilisation de Polη. Enfin, Fanca (ou la voie FANC) participe à l’inhibition de la recombinaison non homologue (NHEJ) et est requis durant le CSR pour stabiliser les duplexes entre 2 régions de microhomologies qui facilitent le recrutement d’endonucléases et réguler l’accès des DNA polymérases aux cassures de l’ADN. / To recognize and respond dynamically to an enormous variety of different pathogens, B lymphocytes of the immune system have evolved controlled genetic processes at their immunoglobulin (Ig) loci that are known as Ig diversification including V(D)J recombination, somatic hypermutation (SHM), and class switch recombination (CSR). These complex and vulnerable processes are orchestrated by multiple DNA repair pathways. Fanconi anemia (FA) is a rare genetic disorder that can lead to bone marrow failure, congenital abnormalities, and an increased risk of leukemia and cancer. FANC pathway has been implicated in DNA interstrands crosslinks (ICL) repair and in the rescue of stalled replication forks. The FANC pathway also plays a fundamental role in coordinating the DNA repair pathways. Several lines of evidence suggest a possible involvement of the FANC pathway in Ig diversification processes, thus we are particularly interested in revealing function of FANC pathway during these processes. By using Fanca-/- mice, our results first show that during V(D)J recombination, Fanca (or FANC pathway) participates to the control of the transition from pre-B to immature B cells in bone marrow (BM), probably through transcriptional activation of post-rearranged κ light chain. In addition, Fanca might play a role in nucleotide addition at coding end, possibly by regulating either TdT or Polµ activity/activation. Secondly, we found that Fanca is required for the induction of transition mutations at A/T during SHM via regulation of Polη expression/stabilization. Finally, Fanca (or FANC pathway) inhibits short-range recombination and is required during CSR to stabilize duplexes between 2 short microhomology regions that facilitate the recruitment of endonucleases to trim overhangs and avoid unscheduled access of polymerases to DNA ends.
|
10 |
Défauts de la réparation de l’ADN et développement lymphoïde : Analyse de situations pathologiques chez l’homme et la souris / DNA repair defects and lymphocyte development : Study of pathological contexts in human and miceVera, Gabriella 12 November 2012 (has links)
Au cours de leur développement, les cellules du système hématopoïétique sont très exposées aux dommages à l’ADN qui peuvent avoir une origine exogène ou endogène. Les organismes vivants ont développé de nombreux mécanismes de réparation pour y faire face, et leur dysfonctionnement est responsable de maladies rares mais sévères chez l’Homme. Un des deux mécanismes de réparation des cassures double-brin (CDB) de l’ADN joue un rôle prépondérant dans le développement du système immunitaire (SI) des mammifères. Il s’agit de la voie de réparation des extrémités non-homologues (NHEJ) qui est absolument essentiel au bon déroulement de la recombinaison V(D)J dans les progéniteurs lymphocytaires de la moelle osseuse et du thymus. En effet, la formation de CDB de l’ADN est une étape clé de ce remaniement. De même, bien que dans une moindre mesure, le NHEJ intervient pour réparer les cassures induites par AID lors de la commutation de classe des immunoglobulines (Ig- CSR). Notre équipe a précédemment identifié un nouveau facteur du NHEJ, Cernunnos (ou XLF), responsable chez l’Homme de déficit immunitaire combiné sévère (DCIS) associé à une sensibilité aux rayonnements ionisants (RI) et à une microcéphalie. Afin de mieux comprendre le rôle de Cernunnos dans le système hématopoïétique et dans le développement des lymphocytes en particulier, nous avons créé un modèle murin invalidé pour ce gène. De façon surprenante, le développement lymphocytaire se fait quasi normalement dans ces souris, le seul défaut observé est une diminution du nombre de lymphocytes. Cependant, l’analyse fine du répertoire des cellules T a permis de mettre en évidence un biais dans l’utilisation des segments variables V et J de la chaîne α du récepteur (TCRα). Ce serait là la signature d’un défaut de survie des thymocytes, passant par une activation chronique de la voie de l’apoptose dépendante de p53 en réponse à l’accumulation de dommages de l’ADN. Certaines sous- populations de lymphocytes T, comme les iNKTs et les MAITs, seraient ainsi affectées. Par ailleurs, notre équipe poursuit la caractérisation génétique et fonctionnelle de pathologies chez des patients dont le tableau clinique laisse penser qu’il existe un déficit immunitaire ou hématologique primaire associé à un défaut de réparation de l’ADN. Nous nous sommes intéressés à un patient dont le tableau clinique combinant déficit hématopoïétique et instabilité génomique suggère une origine génétique forte. Grâce aux techniques de séquençage haut- débit et à l’étude de ségrégation au sein de la famille nous avons pu isoler plusieurs mutations dont une nous a interpellé plus particulièrement / Throughout their development, hematopoietic cells are exposed to many DNA damages of either exogenous or endogenous origin. Living organisms evolved a variety of DNA repair mechanisms in order to face those threats, and their impairment leads to rare but severe diseases in human. Of the two mechanisms involved in the repair of DNA double-strand break (DSB) repair, one plays a major role in mammal’s Immune System (IS). The non-homologous end joining (NHEJ) pathway is essential for the correct proceeding of V(D)J recombination in lymphocyte progenitors from bone marrow and thymus. Indeed, the formation of DNA DSB is a key step of the rearrangement. In similar fashion, though to a lesser degree, NHEJ is involved in repair of AID induced breaks during immunoglobulin class switch recombination (Ig-CSR). Our team previously identified a new NHEJ factor, Cernunnos (or XLF), as being responsible for a human syndrome of severe combined immunodeficiency (SCID) associated with ionizing radiation (IR) sensitivity (RS-SCID) and microcephaly. To better understand Cernunnos role in the hematopoietic system and particularly in lymphocyte development, we engineered a knock-out (KO) mouse model for this gene. Surprisingly, lymphocyte development is almost normal in these mice, the only defect observed being a decrease of lymphocyte number. However, a refined analysis of T cell repertoire allowed us to uncover a bias in the use of V and J segments from the receptor’s α chain (TCRα). This is the signature of a survival defect in thymocytes, caused by chronic activation of the p53 dependent apoptosis pathway in response to DNA damage. Some discrete T cell populations, such as iNKTs and MAITS, would be affected. In the meantime, our team pursues the uncovering of genetic diseases and their functional description in patients showing signs of immune or hematopoietic deficiency combined to impaired DNA repair. We focused on a patient harboring clinical signs of genomic instability and hematopoietic defects with strong evidence for genetic cause. Thanks to high-throughput DNA sequencing technology and whole genome association study (WGAS), we identified several mutations, one of them striking us as pertinent
|
Page generated in 0.0784 seconds