• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 9
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fluoration de dérivés du benzovesamicol pour l'obtention de radioligands potentiels du transporteur vésiculaire de l'acéthylcholine / Synthesis and in vitro characterization of fluorinated benzovesamicol derivatives as potential radioligands for the vesicular acetylcholine transporter

Kovac, Mitja 01 March 2013 (has links)
Les déficiences en transporteur vésiculaire de l'acétylcholine (VAChT) sont l'un des symptômes précoces de perte neuronale lors de la maladie d'Alzheimer, perte fortement corrélée avec la gravité de la démence associée. Comme le (2R,3R)-5-IBVM est le radioligand de référence du VAChT utilisé en imagerie TEMP, la synthèse par fluoro-de-diazenation a conduit à son analogue fluoré, le 5-FBVM, ainsi qu’à ses énantiomères. Par étude 3D-QSAR, confirmée par évaluation in vitro, chaque énantiomère du 5-FBVM montre une affinité pour le VAChT similaire au 5-IBVM. D'autres travaux ont permis d'améliorer le rendement en 5- FBVM par fluoro-de-triazénation du précurseur triazène, le 5-TVB, en utilisant seulement de l’éthérate de trifluorure de bore qui joue le double rôle d’acide de Lewis et d’agent fluorant, dans le tétrachlorure de carbone, sous irradiation micro-onde. L’optimisation de la fluoro-detriazénation en étudiant différents paramètres expérimentaux compatibles avec un radiomarquage a permis d’obtenir le 5-[18F]FBVM. Ce résultat encourageant devrait conduire à l’obtention du 5-[18F]FBVM. / Deficiencies in vesicular acetylcholine transporter (VAChT) are among the earliest neuronal changes preceding clinical symptoms of Alzheimer's disease, and show a strong correlation with the severity of dementia. As (2R,3R)-5-IBVM is the lead and the only SPECT radioligand for VAChT human imaging, we synthesized by fluoro-de-diazoniation its fluoro analog 5-FBVM with corresponding enantiomers, and confirmed by 3D QSAR and in vitro studies that both enantiomers of 5-FBVM are of the same order affinity as 5-IBVM. Furthermore, we greatly improved 5-FBVM yield via fluoro-de-triazenation of the corresponding triazene precursor 5-TBV using boron trifluoride etherate under non-protic acid conditions in tetrachloromethane under optimized microwave irradiation. By testing different reaction parameters in numerous experimental attempts to find fluoro-de-triazenation conditions which can be transposed to radiofluorination, we may accomplished 5-[18F]FBVM. This encouraging result warrants to optimize 5-[18F]FBVM yield via promising methods obtained in cold chemistry.
2

The vesicular acetylcholine transporter is present in melanocytes and keratinocytes in the human epidermis

Schallreuter, Karin U., Chavan, Bhavan, Elwary, Souna M.A. January 2006 (has links)
No / The human epidermis holds the full machinery for cholinergic signal transduction. However, the presence of the vesicular transporter (vesicular acetylcholine (ACh) transporter (VAChT)) for both choline and ACh has never been shown in this compartment. The results of this study confirm the presence of VAChT in cutaneous nerves and in both epidermal melanocytes and keratinocytes as well as in their nuclei using immunofluorescence labelling in situ and in vitro, Western blot analysis of cellular and nuclear extracts and reverse transcription-PCR. These results underline that ACh/choline transport in the non-neuronal epidermis is no different from the neuronal pathway. However, the function of VAChT in the nucleus remains to be shown.
3

Cholinergic terminals and receptors in the lumbosacral spinal cord of adult and neonatal rat

Ralcewicz, Karen Lynn 27 January 2006 (has links)
Cholinergic input to, and cholinergic mechanisms within the lower lumbar (L6) and upper sacral (S1) spinal cord of rat may influence neuronal excitability and afferent transmission (Thor et al, 2000) and may provide the environment necessary for appropriate central nervous system control of bladder and bowel function. It is unclear, however, if cholinergic terminals and receptors are present in the L6 & S1 spinal segments of rat and when this may develop. Cholinergic mechanisms have been shown to alter sensory afferent transmission, enhance motoneuron excitability, induce plateau potentials via non-linear membrane properties in motoneurons and reveal oscillations in locomotor-related interneurons. The enhanced activity of sphincter motoneurons was attributed to non-linear properties during the continence phase of distention-evoked voiding in the decerebrate cat (Paroschy & Shefchyk, 2000). Candidate neurotransmitters inducing non-linear properties in cat sphincter motoneurons are 5-HT (Paroschy & Shefchyk, 2000) and acetylcholine via motoneuron axon collaterals (Sasaki, 1994) and other spinal sources. We have established using the antibody to the vesicular acetylcholine transporter (VAChT) that cholinergic terminals are present on ventrolateral Onuf (VLO), dorsomedial Onuf (DMO) motoneurons and parasympathetic preganglionic motoneurons (PGN) in the L6 and S1 rat spinal cord segments. Muscarinic receptor (M2), nicotinic-α4 and α7 receptor subunit immunoreactivity was also present on Onuf motoneurons and in regions dorsal to the PGN. One source of the cholinergic puncta on Onuf motoneurons may be from motoneuron axon collaterals which we observed on a postnatal day 15 VLO motoneuron. Cholinergic terminals were observed on vasoactive intestinal polypeptide-immunoreactive (VIP) afferents, interneurons in the intermediolateral (IML) region and perhaps on other afferents in the lateral and medial collateral pathway of L6 and S1 spinal segments. In the ventral horn, the cholinergic puncta and receptors appear to have a mature distribution around two weeks postnatal and the cholinergic terminals appeared to have a mature distribution in the IML region by three weeks postnatal. Using whole cell patch clamp recording techniques and thick slices of the L6 and S1 rat spinal cord, we observed excitatory responses of ventral horn neurons and motoneurons to carbachol (10-50 μM), a non-specific cholinergic agonist. Ventral horn neurons (postnatal day 8- 16) exhibited prolonged firing and prolonged depolarizations (plateau potentials) beyond the duration of the applied excitatory input from cholinergic (n=6/33) and other (n= 4/37) neurotransmitter systems. In a selection of the neurons with plateau potentials, the L-type calcium current played a role in the plateau production (n=5/5) and low frequency oscillations (n=2/2) as revealed by nifedipine. Postnatally, the voiding reflex changes from a perineal-evoked reflex, to the adult bladder-bladder reflex. Cholinergic input may be responsible in part for the bursting activity of the external urethral sphincter and the activation of the bladder, which is required for complete voiding reflexes in the adult rat. Plateau potentials and enhanced excitability due to cholinergic mechanisms could render inessential a constant excitatory drive that is required in the perineal-evoked voiding reflex in the neonatal rat and may underlie changes in the voiding reflexes that occur during postnatal development. / February 2006
4

Cholinergic terminals and receptors in the lumbosacral spinal cord of adult and neonatal rat

Ralcewicz, Karen Lynn 27 January 2006 (has links)
Cholinergic input to, and cholinergic mechanisms within the lower lumbar (L6) and upper sacral (S1) spinal cord of rat may influence neuronal excitability and afferent transmission (Thor et al, 2000) and may provide the environment necessary for appropriate central nervous system control of bladder and bowel function. It is unclear, however, if cholinergic terminals and receptors are present in the L6 & S1 spinal segments of rat and when this may develop. Cholinergic mechanisms have been shown to alter sensory afferent transmission, enhance motoneuron excitability, induce plateau potentials via non-linear membrane properties in motoneurons and reveal oscillations in locomotor-related interneurons. The enhanced activity of sphincter motoneurons was attributed to non-linear properties during the continence phase of distention-evoked voiding in the decerebrate cat (Paroschy & Shefchyk, 2000). Candidate neurotransmitters inducing non-linear properties in cat sphincter motoneurons are 5-HT (Paroschy & Shefchyk, 2000) and acetylcholine via motoneuron axon collaterals (Sasaki, 1994) and other spinal sources. We have established using the antibody to the vesicular acetylcholine transporter (VAChT) that cholinergic terminals are present on ventrolateral Onuf (VLO), dorsomedial Onuf (DMO) motoneurons and parasympathetic preganglionic motoneurons (PGN) in the L6 and S1 rat spinal cord segments. Muscarinic receptor (M2), nicotinic-α4 and α7 receptor subunit immunoreactivity was also present on Onuf motoneurons and in regions dorsal to the PGN. One source of the cholinergic puncta on Onuf motoneurons may be from motoneuron axon collaterals which we observed on a postnatal day 15 VLO motoneuron. Cholinergic terminals were observed on vasoactive intestinal polypeptide-immunoreactive (VIP) afferents, interneurons in the intermediolateral (IML) region and perhaps on other afferents in the lateral and medial collateral pathway of L6 and S1 spinal segments. In the ventral horn, the cholinergic puncta and receptors appear to have a mature distribution around two weeks postnatal and the cholinergic terminals appeared to have a mature distribution in the IML region by three weeks postnatal. Using whole cell patch clamp recording techniques and thick slices of the L6 and S1 rat spinal cord, we observed excitatory responses of ventral horn neurons and motoneurons to carbachol (10-50 μM), a non-specific cholinergic agonist. Ventral horn neurons (postnatal day 8- 16) exhibited prolonged firing and prolonged depolarizations (plateau potentials) beyond the duration of the applied excitatory input from cholinergic (n=6/33) and other (n= 4/37) neurotransmitter systems. In a selection of the neurons with plateau potentials, the L-type calcium current played a role in the plateau production (n=5/5) and low frequency oscillations (n=2/2) as revealed by nifedipine. Postnatally, the voiding reflex changes from a perineal-evoked reflex, to the adult bladder-bladder reflex. Cholinergic input may be responsible in part for the bursting activity of the external urethral sphincter and the activation of the bladder, which is required for complete voiding reflexes in the adult rat. Plateau potentials and enhanced excitability due to cholinergic mechanisms could render inessential a constant excitatory drive that is required in the perineal-evoked voiding reflex in the neonatal rat and may underlie changes in the voiding reflexes that occur during postnatal development.
5

Cholinergic terminals and receptors in the lumbosacral spinal cord of adult and neonatal rat

Ralcewicz, Karen Lynn 27 January 2006 (has links)
Cholinergic input to, and cholinergic mechanisms within the lower lumbar (L6) and upper sacral (S1) spinal cord of rat may influence neuronal excitability and afferent transmission (Thor et al, 2000) and may provide the environment necessary for appropriate central nervous system control of bladder and bowel function. It is unclear, however, if cholinergic terminals and receptors are present in the L6 & S1 spinal segments of rat and when this may develop. Cholinergic mechanisms have been shown to alter sensory afferent transmission, enhance motoneuron excitability, induce plateau potentials via non-linear membrane properties in motoneurons and reveal oscillations in locomotor-related interneurons. The enhanced activity of sphincter motoneurons was attributed to non-linear properties during the continence phase of distention-evoked voiding in the decerebrate cat (Paroschy & Shefchyk, 2000). Candidate neurotransmitters inducing non-linear properties in cat sphincter motoneurons are 5-HT (Paroschy & Shefchyk, 2000) and acetylcholine via motoneuron axon collaterals (Sasaki, 1994) and other spinal sources. We have established using the antibody to the vesicular acetylcholine transporter (VAChT) that cholinergic terminals are present on ventrolateral Onuf (VLO), dorsomedial Onuf (DMO) motoneurons and parasympathetic preganglionic motoneurons (PGN) in the L6 and S1 rat spinal cord segments. Muscarinic receptor (M2), nicotinic-α4 and α7 receptor subunit immunoreactivity was also present on Onuf motoneurons and in regions dorsal to the PGN. One source of the cholinergic puncta on Onuf motoneurons may be from motoneuron axon collaterals which we observed on a postnatal day 15 VLO motoneuron. Cholinergic terminals were observed on vasoactive intestinal polypeptide-immunoreactive (VIP) afferents, interneurons in the intermediolateral (IML) region and perhaps on other afferents in the lateral and medial collateral pathway of L6 and S1 spinal segments. In the ventral horn, the cholinergic puncta and receptors appear to have a mature distribution around two weeks postnatal and the cholinergic terminals appeared to have a mature distribution in the IML region by three weeks postnatal. Using whole cell patch clamp recording techniques and thick slices of the L6 and S1 rat spinal cord, we observed excitatory responses of ventral horn neurons and motoneurons to carbachol (10-50 μM), a non-specific cholinergic agonist. Ventral horn neurons (postnatal day 8- 16) exhibited prolonged firing and prolonged depolarizations (plateau potentials) beyond the duration of the applied excitatory input from cholinergic (n=6/33) and other (n= 4/37) neurotransmitter systems. In a selection of the neurons with plateau potentials, the L-type calcium current played a role in the plateau production (n=5/5) and low frequency oscillations (n=2/2) as revealed by nifedipine. Postnatally, the voiding reflex changes from a perineal-evoked reflex, to the adult bladder-bladder reflex. Cholinergic input may be responsible in part for the bursting activity of the external urethral sphincter and the activation of the bladder, which is required for complete voiding reflexes in the adult rat. Plateau potentials and enhanced excitability due to cholinergic mechanisms could render inessential a constant excitatory drive that is required in the perineal-evoked voiding reflex in the neonatal rat and may underlie changes in the voiding reflexes that occur during postnatal development.
6

Cholinergic Projections to the Inferior Colliculus

Noftz, William Andrew 31 August 2020 (has links)
No description available.
7

β-AMYLOID, CHOLINERGIC TRANSMISSION, AND CEREBROVASCULAR SYSTEM - A DEVELOPMENTAL STUDY IN A TRANSGENIC MOUSE MODEL OF ALZHEIMER’S DISEASE

Kuznetsova, Elena 24 April 2013 (has links) (PDF)
Grundlage der vorgelegten Arbeit sind die bei der Alzheimerschen Erkrankung beobachtbaren pathologischen Merkmale, wie die progressive Akkumulation von β-Amyloid-Plaques, cholinerger Dysfunktion und zerebrovaskuläre Abnormalitäten. Die in englischer Sprache verfasste Dissertation ist eine tierexperimentelle Studie, die versucht, den Zusammenhang von β-Amyloid, cholinerger Neurotransmission und zerebralem Gefäßsystem bei der Alzheimerschen Erkrankung näher zu charakterisieren. An Hirnmaterial aus der transgenen Maus Tg2576, die die schwedische Mutation des humanen Amyloidpräkursorproteins als Transgen trägt und ab dem 10. Lebensmonat durch humane β-Amyloid-Plaqueablagerungen in der Hirnrinde imponiert, wurden im Altersverlauf (4 bis 18 Monate) immunhistochemische Untersuchungen zur morphologischen Integrität der zerebralen Mikrogefäße, der kortikalen cholinergen Nervterminalen und der intrazerebralen cholinergen neurovaskulären Innervation durchgeführt. Am somatosensorischen Kortex werden beispielhaft die Expression des Glukosetransporters 1 oder Solanum tuberosum Lektin als Kapillarmarker und des vesikulären Acetylcholintransporters als Marker für cholinerge Fasern mittels Immunfluoreszenz und Laser-Scanning Mikroskopie erfasst, einer semiquantitativen Computer-gestützten Bildanalytischen Auswertung unterzogen und mit dem Ausmaß der kortikalen Plaquebeladung korreliert. So konnte gezeigt werden, dass die Dichte der Blutgefäße und cholinergen Fasern im somatosensorischen Kortex von transgenen Tieren mit dem Alter im Vergleich zu nichttransgenen Kontrolltieren abnimmt, was mit einer Reduktion der perivaskulären cholinergen Innervation einhergeht. Die erhobenen Befunde stützen die von J.C. de la Torre und T. Mussivand schon im Jahre 1993 formulierte „vaskuläre Hypothese“, wonach bei der sporadischen Form der Alzheimerschen Erkrankung alters- und Lebensstil-bedingte Schädigungen des zerebralen Gefäßsystems eine zentrale Rolle bei der Manifestierung der Erkrankung spielen.
8

β-AMYLOID, CHOLINERGIC TRANSMISSION, AND CEREBROVASCULAR SYSTEM - A DEVELOPMENTAL STUDY IN A TRANSGENIC MOUSE MODEL OF ALZHEIMER’S DISEASE

Kuznetsova, Elena 24 January 2013 (has links)
Grundlage der vorgelegten Arbeit sind die bei der Alzheimerschen Erkrankung beobachtbaren pathologischen Merkmale, wie die progressive Akkumulation von β-Amyloid-Plaques, cholinerger Dysfunktion und zerebrovaskuläre Abnormalitäten. Die in englischer Sprache verfasste Dissertation ist eine tierexperimentelle Studie, die versucht, den Zusammenhang von β-Amyloid, cholinerger Neurotransmission und zerebralem Gefäßsystem bei der Alzheimerschen Erkrankung näher zu charakterisieren. An Hirnmaterial aus der transgenen Maus Tg2576, die die schwedische Mutation des humanen Amyloidpräkursorproteins als Transgen trägt und ab dem 10. Lebensmonat durch humane β-Amyloid-Plaqueablagerungen in der Hirnrinde imponiert, wurden im Altersverlauf (4 bis 18 Monate) immunhistochemische Untersuchungen zur morphologischen Integrität der zerebralen Mikrogefäße, der kortikalen cholinergen Nervterminalen und der intrazerebralen cholinergen neurovaskulären Innervation durchgeführt. Am somatosensorischen Kortex werden beispielhaft die Expression des Glukosetransporters 1 oder Solanum tuberosum Lektin als Kapillarmarker und des vesikulären Acetylcholintransporters als Marker für cholinerge Fasern mittels Immunfluoreszenz und Laser-Scanning Mikroskopie erfasst, einer semiquantitativen Computer-gestützten Bildanalytischen Auswertung unterzogen und mit dem Ausmaß der kortikalen Plaquebeladung korreliert. So konnte gezeigt werden, dass die Dichte der Blutgefäße und cholinergen Fasern im somatosensorischen Kortex von transgenen Tieren mit dem Alter im Vergleich zu nichttransgenen Kontrolltieren abnimmt, was mit einer Reduktion der perivaskulären cholinergen Innervation einhergeht. Die erhobenen Befunde stützen die von J.C. de la Torre und T. Mussivand schon im Jahre 1993 formulierte „vaskuläre Hypothese“, wonach bei der sporadischen Form der Alzheimerschen Erkrankung alters- und Lebensstil-bedingte Schädigungen des zerebralen Gefäßsystems eine zentrale Rolle bei der Manifestierung der Erkrankung spielen.:CHAPTER 1: INTRODUCTION 1.1 Alzheimer’s disease 1 1.2 APP processing and β-amyloid production 2 1.3 Cholinergic dysfunction in Alzheimer’s disease 5 1.4 Cerebrovascular abnormalities in Alzheimer’s disease 8 1.5 Cholinergic innervation of intracortical cerebral microvessels 9 1.6 Transgenic Tg2576 mouse model of Alzheimer’s disease 11 1.7 Aim of study 14 CHAPTER 2: MATERIALS AND METHODS 2.1 Materials 15 2.1.1 Chemical reagents used 15 2.1.2 Biological reagents used 15 2.1.3 Preparation of solutions and buffers 15 2.1.4 Antibodies and reagents used for immunohistochemistry 17 2.1.5 Transgenic animals 19 2.2 Methods 20 2.2.1 Tissue preparation and sampling of sections 20 2.2.2 Immunohistochemistry 20 2.2.2.1 Protocol of immunofluorescent labeling 20 2.2.2.2 Protocol of immunoperoxidase labeling (ABC technique) 21 2.2.2.3 Combination of primary and secondary antibodies 22 2.2.2.4 Protocol of β–amyloid immunolabeling (Formic acid epitope retrieval method) 23 2.2.3 Histochemistry 23 2.2.3.1 Thioflavin S staining 23 2.2.3.2 Nissl staining 23 2.2.3.3 Solanum Tuberosum Lectin (STL) staining 24 2.2.4 Double and triple-coloured immuno-/ histochemical staining of brain sections 24 2.2.5 Microscopy and digital image processing 25 2.2.6 Morphological and morphometric analyses 25 2.2.6.1 Cortical microvessels 25 2.2.6.2 Cortical cholinergic innervation 27 2.2.6.2.1 Total density of VAChT-immunoreactivity 27 2.2.6.2.2 Estimation of the density of varicosities on cholinergic fibres 29 2.2.6.3 Estimation of cholinergic perivascular innervation of cortical microvessels 29 2.2.6.4 Three-dimensional-imaging of vessels innervation 30 2.2.7 Statistical analysis 30 CHAPTER 3: RESULTS 3.1 Developmental and amyloid plaque-related changes in cerebral cortical capillaries in transgenic Tg2576 Alzheimer mice 31 3.1.1 Morphological distribution of brain vessels in the cerebral cortex of wild type mice 31 3.1.2 Microvessel density under plaque burden 33 3.2 Developmental and amyloid plaque-related changes in cholinergic neurotransmission in cholinoceptive target regions of transgenic Tg2576 mice 39 3.2.1 Visualisation of cholinergic nerve terminals in mouse brain 39 3.2.2 VAChT-Expression in wild type and transgenic Tg2576 mice 40 3.3 Role of cholinergic system in β-amyloid-related changes in the cerebrovascular system of transgenic Tg2576 mice 46 3.3.1 Solanum tuberosum lectin (STL) histochemistry in visualisation of brain vessels, β-amyloid, and microglia 46 3.3.1.1 Solanum tuberosum lectin and brain vessels 46 3.3.1.2 Solanum tuberosum lectin and β-amyloid plaques 47 3.3.1.3 Solanum tuberosum lectin staining to visualize glial cells 48 3.3.2 Cholinergic perivascular innervation of cerebral cortical microvessels in transgenic Tg2576 and wild type mice 50 CHAPTER 4: DISCUSSION 4.1 β-Amyloid and brain vascular system: the vascular hypothesis of Alzheimer’s disease 55 4.1.1 Evidences of a role of vascular mechanisms in Alzheimer’s disease 55 4.1.2 Effect of β-amyloid on brain vascular system 57 4.1.3 Effect of ischemia and hypoperfusion on APP processing 59 4.1.4 Effect of β-amyloid on cholinergic function in brain vascular system 59 4.2 Aim of study and main results obtained 61 4.3 Age-related changes in cerebral cortical microvessels in the presence and absence of β-amyloid plaque load 62 4.4 Age-related changes of cholinergic terminals in cholinoceptive target regions in the presence and absence of β-amyloid plaque load 64 4.4.1 VAChT – a reliable marker for detection of cholinergic terminals in cerebral cortex 64 4.4.2 The barrel field of the somatosensory cortex 1 (S1BF) as a model region to reveal age-related changes in cholinergic innervation 65 4.4.3 VAChT expression: morphological and morphometric studies 66 4.5 Age-related changes in cholinergic innervation of cerebral cortical microvessels in the presence and absence of β-amyloid plaque load 69 4.5.1 STL – a mono-marker for detection of cortical vessels, senile amyloid plaques and activated microglia in cerebral cortex 69 4.5.2 Cholinergic perivascular innervation of cerebral cortical microvessels in transgenic Tg2576 mice 70 4.5.3 Quantitation of cholinergic input on cerebral microvessels of mouse brain 71 4.6 Summary and conclusions 75 REFERENCES 77
9

La formation de synapses par les neurones périphériques sur des surfaces synthétiques

Ma, Xiya 08 1900 (has links)
No description available.

Page generated in 0.0275 seconds