• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 103
  • 77
  • 30
  • 25
  • 12
  • 12
  • 6
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 470
  • 146
  • 92
  • 69
  • 64
  • 61
  • 58
  • 57
  • 54
  • 52
  • 47
  • 46
  • 42
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Density dependent differentiation of mesenchymal stem cells to endothelial cells

Whyte, Jemima Lois January 2010 (has links)
The differentiation of mesenchymal stem cells (MSCs) to endothelium is a critical but poorly understood feature of tissue vascularisation and considerable scepticism still remains surrounding this important differentiation event. Defining features of endothelial cells (ECs) are their ability to exist as contact-inhibited polarised monolayers that are stabilised by intercellular junctions, and the expression and activity of endothelial markers. During vasculogenesis, communication between MSCs and differentiated ECs or vascular smooth muscle cells, or between MSCs themselves is likely to influence MSC differentiation. In this study, the possibility that cell density can influence MSC differentiation along the EC lineage was examined. High density plating of human bone marrow-derived MSCs induced prominent endothelial characteristics including cobblestone-like morphology, enhanced endothelial networks, acetylated-low density lipoprotein uptake, vascular growth and stimulated expression of characteristic endothelial markers. Mechanistically, this density-dependent process has been defined. Cell-cell contact-induced Notch signalling was a key initiating step regulating commitment towards an EC lineage, whilst VEGF-A stimulation was required to consolidate the EC fate. Thus, this study not only provides evidence that MSC density is an essential microenvironmental factor stimulating the in vitro differentiation of MSCs to ECs but also demonstrates that MSCs can be differentiated to a functional EC. Taken together, defining how these crucial MSC differentiation events are regulated in vitro, provides an insight into how MSCs differentiate to ECs during postnatal neovascularisation and an opportunity for the therapeutic manipulation of MSCs in vivo, enabling targeted modulation of neovascularisation in ischaemia, wound healing and tumourigenesis.
132

Effects of gold nanoparticles on vascular endothelial growth factor-A-induced melanoma cell growth and angiogenesis

Matutule, Lebogang Johanna 11 1900 (has links)
Melanoma is a skin cancer that relies on angiogenesis for growth and progression. Angiogenesis is the growth of new vessels from existing vessels and follows a number of steps that include endothelial cell growth, migration and tubulogenesis. Current anti-angiogenic drugs are not effective in the treatment of melanomas due to serious side effects such as hypertension and the development of resistance. On the other hand, gold nanoparticles (AuNPs) have been reported to be biocompatible in preclinical models. Furthermore, AuNPs were shown to be cytotoxic to prostate cancer cells. In human umbilical vein endothelial cells, AuNPs inhibited the angiogenic protein, vascular endothelial growth factor-A (VEGF-A). Therefore, the study aimed to investigate the possible cytotoxic effects of AuNPs (1.2–3.2 nM) on melanoma cells and angiogenesis parameters (endothelial cell growth and migration) as well as on the levels of angiogenesis promoting proteins, VEGF-A and placental growth factor (PIGF). Melanoma (B16-F10) cells and tumour-derived endothelial (sEnd.2) cells were maintained in an incubator in a humidified atmosphere containing 5% CO2 at a temperature of 37°C. To investigate whether AuNPs were cytotoxic to melanoma cells, the effect of the particles on B16-F10 cell survival was measured using the crystal violet assay. To determine the effects of AuNPs on angiogenesis parameters, endothelial cell (EC) growth and migration were investigated using crystal violet assay and the scratch assay respectively. Also, EC morphology was studied using polarisation-optical interference contrast light microscopy. The enzyme-linked immunosorbent assay (ELISA) was used to determine the effects of AuNPs on the levels of VEGF-A and PIGF. The results showed that AuNPs decreased the viability of melanoma and endothelial cells. The scratch assay showed that more ECs migrated in cultured treated with AuNPs (P < 0.05). The concentration of VEGF-A and PIGF was reduced significantly following treatment with AuNPs, meaning that the particles exhibited anti-angiogenic properties. This outcome provides a basis for further testing of AuNPs as a potential treatment for melanoma. / Dissertation (MSc)--University of Pretoria, 2020. / National Research Foundation / Mintek / Physiology / MSc / Unrestricted
133

Activation of AP-1 and SP1 Correlates With Wound Growth Factor Gene Expression in Glucan-Treated Human Fibroblasts

Wei, Duo, Williams, David, Browder, William 28 August 2002 (has links)
Glucan is a natural product immunomodulator that has been reported to enhance early wound repair. The mechanism of glucan-stimulated wound repair was thought to be indirect via macrophage release of wound growth factors. However, recent data indicate that there are glucan-specific receptors on human fibroblasts that can modulate cellular function following interaction with the glucan ligand. In this study we examined the effect of glucan on activation of the transcription factors activator protein-1 (AP-1) and specificity protein-1 (Sp1) in normal human dermal fibroblasts. AP-1 and Sp1 are involved in the regulation of cytokine and procollagen genes. In addition, we evaluated the effect of glucan on wound growth factor and vascular endothelial growth factor (VEGF) mRNA expression in primary cultures of normal human dermal fibroblasts. Glucan (1 μg/ml) stimulated fibroblast AP-1 and Sp1 activation in a time-dependent manner, although the temporal kinetics varied between the two transcription factors. AP-1 binding activity was increased (p<0.05) at early time intervals (1, 2, 4, 8 and 12 h), while Sp1 nuclear binding activity was increased (p<0.05) at later time intervals (12, 24, 36 and 48 h). Glucan (1 μg/ml) stimulated fibroblast expression of neurotrophin 3 (NT-3), platelet derived growth factor A (PDGF-A), platelet derived growth factor B (PDGF-B), fibroblast growth factor acidic (aFGF), fibroblast growth factor basic (bFGF), transforming growth factor alpha (TGFα), transforming growth factor beta (TGFβ) and VEGF mRNA at 8 h.
134

Combinational treatment approach for traumatic spinal cord injury

Walker, Melissa J. 02 March 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Spinal cord injury (SCI) is devastating and debilitating, and currently no effective treatments exist. Approximately, 12,000 new cases of SCI occur annually in the United States alone. The central nervous system has very low repair capability after injury, due to the toxic environment in the injured tissue. After spinal cord trauma, ruptured blood vessels cause neighboring cells and tissues to be deprived of oxygen and nutrients, and result in the accumulation of carbon dioxide and waste. New blood vessels form spontaneously after SCI, but then retract as the injured tissue forms a cavity. Thus, the newly formed vasculature likely retracts because it lacks a structural support matrix to extend across the lesion. Currently, in the field of spinal cord injury, combinational treatment approaches appear to hold the greatest therapeutic potential. Therefore, the aim of these studies was to transplant a novel, non-immunogenic, bioengineered hydrogel, into the injured spinal cord to serve as both a structural scaffold (for blood vessels, axons, and astrocytic processes), as well as a functional matrix with a time-controlled release of growth factors (Vascular endothelial growth factor, VEGF; Glial cell line-derived neurotrophic factor, GDNF). The benefit of this hydrogel is that it remains liquid at cooler temperatures, gels to conform to the space surrounding it at body temperature, and was designed to have a similar tensile strength as spinal cord tissue. This is advantageous due to the non-uniformity of lesion cavities following contusive spinal cord injury. Hydrogel alone and combinational treatment groups significantly improved several measures of functional recovery and showed modest histological improvements, yet did not provoke any increased sensitivity to a thermal stimulus. Collectively, these findings suggest that with further investigation, hydrogel along with a combination of growth factors might be a useful therapeutic approach for repairing the injured spinal cord.
135

Studies for maximizing value of antibody drugs against tumors / 抗がん治療における抗体薬の価値最大化に向けた研究

Kashima(Yamashita), Yoriko 25 November 2014 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(農学) / 乙第12879号 / 論農博第2806号 / 新制||農||1028(附属図書館) / 学位論文||H26||N4878(農学部図書室) / 31597 / (主査)教授 植田 和光, 教授 植田 充美, 教授 矢﨑 一史 / 学位規則第4条第2項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
136

Expression of Vascular Endothelial Growth Factor in Ovarian Cancer Inhibits Tumor Immunity through the Accumulation of Myeloid-Derived Suppressor Cells / 卵巣癌における血管内皮増殖因子の発現は、骨髄由来免疫抑制性細胞の浸潤を介して腫瘍免疫を抑制している

Horikawa, Naoki 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20253号 / 医博第4212号 / 新制||医||1020(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 河本 宏, 教授 戸井 雅和, 教授 小川 誠司 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
137

Long isoform of VEGF stimulates cell migration of breast cancer by filopodia formation via NRP1/ARHGAP17/Cdc42 regulatory network / 乳癌においてVEGFはNRP1/ARHGAP17/Cdc42のネットワークを通じてfilopodiaの形成を促進しmigrationを誘導する

Kiso, Marina 26 November 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21414号 / 医博第4404号 / 京都大学大学院医学研究科医学専攻 / (主査)教授 万代 昌紀, 教授 小川 誠司, 教授 武藤 学 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
138

Cellulose-chitosan based Scaffolds as Robust Injectable System for Bone Regeneration

Gaihre, Bipin 28 August 2019 (has links)
No description available.
139

Inhibition of VEGF receptors induces pituitary apoplexy: an experimental study in mice / VEGF受容体の阻害は下垂体卒中を誘発する:マウスにおける実験的研究

Sugita, Yoshito 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24529号 / 医博第4971号 / 新制||医||1065(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 髙橋 良輔, 教授 浅野 雅秀, 教授 辻川 明孝 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
140

The Role of CD36 in Thrombospondin-1 Mediated Antiangiogenesis: A Study of Regulation of CD36 Ecto-phosphorylation and Mechanisms of VEGF Inhibition

Chu, Ling-yun 22 May 2012 (has links)
No description available.

Page generated in 0.0264 seconds