• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 72
  • 64
  • 50
  • 25
  • 21
  • 15
  • 10
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 680
  • 197
  • 162
  • 136
  • 135
  • 134
  • 127
  • 124
  • 118
  • 85
  • 81
  • 75
  • 73
  • 69
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Electromigration modeling and layout optimization for advanced VLSI

Pak, Jiwoo 04 September 2015 (has links)
Electromigration (EM) is a critical problem for interconnect reliability in advanced VLSI design. Because EM is a strong function of current density, a smaller cross-sectional area of interconnects can degrade the EM-related lifetime of IC, which is expected to become more severe in future technology nodes. Moreover, as EM is governed by various factors such as temperature, material property, geometrical shape, and mechanical stress, different interconnect structures can have distinct EM issues and solutions to mitigate them. For example, one of the most prominent technologies, die stacking technology of three-dimensional (3D) ICs, can have different EM problems from that of planer ICs, due to their unique interconnects such as through-silicon vias (TSVs). This dissertation investigates EM in various interconnect structures, and applies the EM models to optimize IC layout. First, modeling of EM is developed for chip-level interconnects, such as wires, local vias, TSVs, and multi-scale vias (MSVs). Based on the models, fast and accurate EM-prediction methods are proposed for the chip-level designs. After that, by utilizing the EM-prediction methods, the layout optimization methods are suggested, such as EM-aware routing for 3D ICs and EM-aware redundant via insertion for the future technology nodes in VLSI. Experimental results show that the proposed EM modeling approaches enable fast and accurate EM evaluation for chip design, and the EM-aware layout optimization methods improve EM-robustness of advanced VLSI designs. / text
112

Improvement of longevity and signal quality in implantable neural recording systems

Zargaran Yazd, Arash 05 1900 (has links)
Application of neural prostheses in today's medicine successfully helps patients to increase their activities of daily life and participate in social activities again. These implantable microsystems provide an interface to the nervous system, giving cellular resolution to physiological processes unattainable today with non-invasive methods. The latest developments in genetic engineering, nanotechnologies and materials science have paved the way for these complex systems to interface the human nervous system. The ideal system for neural signal recording would be a fully implantable device which is capable of amplifying the neural signals and transmitting them to the outside world while sustaining a long-term and accurate performance, therefore different sciences from neurosciences, biology, electrical engineering and computer science have to interact and discuss the synergies to develop a practical system which can be used in daily medicine practice. This work investigates the main building blocks necessary to improve the quality of acquired signal from the micro-electronics and MEMS perspectives. While all of these components will be ultimately embedded in a fully implantable recording probe, each of them addresses and deals with a specific obstacle in the neural signal recording path. Specifically we present a low-voltage low-noise low-power CMOS amplifier particularly designed for neural recording applications. This is done by surveying a number of designs and evaluating each design against the requirements for a neural recording system such as power dissipation and noise, and then choosing the most suitable topology for design and implementation of a fully implantable system. In addition a surface modification method is investigated to improve the sacrificial properties and biocompatibility of probe in order to extend the implant life and enhance the signal quality.
113

Limitations and opportunities for wire length prediction in gigascale integration

Anbalagan, Pranav 05 1900 (has links)
Wires have become a major source of bottleneck in current VLSI designs, and wire length prediction is therefore essential to overcome these bottlenecks. Wire length prediction is broadly classified into two types: macroscopic prediction, which is the prediction of wire length distribution, and microscopic prediction, which is the prediction of individual wire lengths. The objective of this thesis is to develop a clear understanding of limitations to both macroscopic and microscopic a priori, post-placement, pre-routing wire length predictions, and thereby develop better wire length prediction models. Investigations carried out to understand the limitations to macroscopic prediction reveal that, in a given design (i) the variability of the wire length distribution increases with length and (ii) the use of Rent’s rule with a constant Rent’s exponent p, to calculate the terminal count of a given block size, limits the accuracy of the results from a macroscopic model. Therefore, a new model for the parameter p is developed to more accurately reflect the terminal count of a given block size in placement, and using this, a new more accurate macroscopic model is developed. In addition, a model to predict the variability is also incorporated into the macroscopic model. Studies to understand limitations to microscopic prediction reveal that (i) only a fraction of the wires in a given design are predictable, and these are mostly from shorter nets with smaller degrees and (ii) the current microscopic prediction models are built based on the assumption that a single metric could be used to accurately predict the individual length of all the wires in a design. In this thesis, an alternative microscopic model is developed for the predicting the shorter wires based on a hypothesis that there are multiple metrics that influence the length of the wires. Three different metrics are developed and fitted into a heuristic classification tree framework to provide a unified and more accurate microscopic model.
114

STRICT : a language and tool set for the design of very large scale integrated circuits

Koelmans, Albertus Maria January 1996 (has links)
An essential requirement for the design of large VLSI circuits is a design methodology which would allow the designer to overcome the complexity and correctness issues associated with the building of such circuits. We propose that many of the problems of the design of large circuits can be solved by using a formal design notation based upon the functional programming paradigm, that embodies design concepts that have been used extensively as the framework for software construction. The design notation should permit parallel, sequential, and recursive decompositions of a design into smaller components, and it should allow large circuits to be constructed from simpler circuits that can be embedded in a design in a modular fashion. Consistency checking should be provided as early as possible in a design. Such a methodology would structure the design of a circuit in much the same way that procedures, classes, and control structures may be used to structure large software systems. However, such a design notation must be supported by tools which automatically check the consistency of the design, if the methodology is to be practical. In principle, the methodology should impose constraints upon circuit design to reduce errors and provide' correctness by construction' . It should be possible to generate efficient and correct circuits, by providing a route to a large variety of design tools commonly found in design systems: simulators, automatic placement and routing tools, module generators, schematic capture tools, and formal verification and synthesis tools.
115

Algorithms and architectures for the multirate additive synthesis of musical tones

Phillips, Desmond Keith January 1996 (has links)
In classical Additive Synthesis (AS), the output signal is the sum of a large number of independently controllable sinusoidal partials. The advantages of AS for music synthesis are well known as is the high computational cost. This thesis is concerned with the computational optimisation of AS by multirate DSP techniques. In note-based music synthesis, the expected bounds of the frequency trajectory of each partial in a finite lifecycle tone determine critical time-invariant partial-specific sample rates which are lower than the conventional rate (in excess of 40kHz) resulting in computational savings. Scheduling and interpolation (to suppress quantisation noise) for many sample rates is required, leading to the concept of Multirate Additive Synthesis (MAS) where these overheads are minimised by synthesis filterbanks which quantise the set of available sample rates. Alternative AS optimisations are also appraised. It is shown that a hierarchical interpretation of the QMF filterbank preserves AS generality and permits efficient context-specific adaptation of computation to required note dynamics. Practical QMF implementation and the modifications necessary for MAS are discussed. QMF transition widths can be logically excluded from the MAS paradigm, at a cost. Therefore a novel filterbank is evaluated where transition widths are physically excluded. Benchmarking of a hypothetical orchestral synthesis application provides a tentative quantitative analysis of the performance improvement of MAS over AS. The mapping of MAS into VLSI is opened by a review of sine computation techniques. Then the functional specification and high-level design of a conceptual MAS Coprocessor (MASC) is developed which functions with high autonomy in a loosely-coupled master- slave configuration with a Host CPU which executes filterbanks in software. Standard hardware optimisation techniques are used, such as pipelining, based upon the principle of an application-specific memory hierarchy which maximises MASC throughput.
116

Automated design of high performance digital filter chips

McAllister, Christine Joan January 1996 (has links)
No description available.
117

Aufbau- und Verbindungstechnik für Elektronik-Baugruppen der Höchstintegration /

Zerna, Thomas. January 2008 (has links)
Zugl.: Dresden, Techn. Universiẗat, Habil.-Schr., 2008. / Text dt. und engl.
118

Entwurfsverfahren für passive hochintegrierte Multimode-Schaltungen der Hochfrequenztechnik in mehrlagigen Herstellungsprozessen

Sadeghfam, Arash January 2008 (has links)
Zugl.: Duisburg, Essen, Univ., Diss., 2008
119

Kostengünstige multimediale Lernprogramme zum Chip-Entwurf

Çatalkaya, Tamer. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2003--Braunschweig.
120

Faseroptische Verbindungen zwischen integrierten Schaltkreisen zur Überwindung der Verbindungskrise in der VLSI-Technik

Hoppe, Lutz. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Jena.

Page generated in 0.0258 seconds